DAY 323:

Today’s Challenge

There are 62 people employed by a company and all of them travel to work by car, bus or train. If 34 employees either drive or go by bus and the difference between those who drive and those who go by train is nine, find the number of people who use each different mode of transport.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 1st & 7th columns of the playing board contain the following fourteen numbers:

5    9    13    21    22    24    27    28    32    50    55    56    60    66

Which two numbers both become square numbers when 9 is added to them?

Make 323 Challenge

Can you arrive at 323 by inserting 2, 3, 3, 4 and 4 into the gaps below?

◯⁴+◯³+◯²–◯×◯ = 323

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

WELCOME

A warm welcome to 7puzzleblog.com and our compendium of daily number puzzles which we design for our many followers from over 160 countries & territories worldwide.

We are also the place to visit for a variety of mathematical activities, including our exciting and successful venture into online math tuition worldwide.

The World’s #1 Daily Number Puzzle Website

This is official. Simply type ‘daily number puzzles‘ into Google or Bing and you’ll see 7puzzleblog.com listed at #1. We appreciate and value your continued support.

Our aim

To improve basic knowledge and confidence of arithmetic in a fun way, so start your numerical adventure by trying to solve our latest number puzzles shown above.

How to use our website

As well as scrolling to the top for our most recent challenges, you can click on the dates below to access the remainder of our number puzzles. We will reply to all comments & answers, tweets to @7puzzle and e-mails to paul@7puzzle.com.

We now post at least three number puzzles each day from our bumper collection of challenges, one of which is always related to the 7puzzle game.

Our signature board game is a superb tool for teachers and parents to utilise with children as well as their own personal challenge.

Spread the message

Please tell family, friends, students, colleagues and puzzle enthusiasts about our fabulous daily number puzzles at 7puzzleblog.comAnswers are also provided.

Paul Godding, Author

January/Ionawr/Enero/Janeiro/Janvier/Eanáir/Gennaio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

February/Chwefror/Febrero/Fevereiro/Février/Feabhra/Febbraio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29

March/Mawrth/Marzo/Março/Mars/Márta/Marzo

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

April/Ebrill/Abril/Abril/Avril/Aibreán/Aprile

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

May/Mai/Mayo/Maio/Mai/Bealtaine/Maggio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

June/Mehefin/Junio/Junho/Juin/Meitheamh/Guigno

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

July/Gorffennaf/Julio/Julho/Juillet/Iúil/Luglio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

August/Awst/Agosto/Agosto/Août/Lúnasa/Agosto

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

September/Medi/Septiembre/Setembro/Septembre/MeánFómhair/Settembre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

October/Hydref/Octubre/Outubro/Octobre/DeireadhFómhair/Ottobre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

November/Tachwedd/Noviembre/Novembro/Novembre/Samhain/Novembre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

December/Rhagfyr/Diciembre/Dezembro/Décembre/Nollaig/Dicembre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

. . . and there’s more!

As well as the thousands of number challenges we continue to develop, some of the other educational activities we are involved in are listed here:

  • supporting students with one-to-one, face-to-face maths tuition locally,
  • . . . and one-to-one online math tuition worldwide,
  • delivering school & university-based maths/puzzle workshops all over the UK,
  • designing board games, card games, puzzles & pocket books that are available for schools, parents and the general public to invest in,
  • advising schools on how to improve children’s general arithmetic & social skills by implementing our PuzzleFriday programme.

Further details of all the above can be found by exploring the various pages of this website. Remember, you are always welcome to contact us on twitter @7puzzle or e-mail paul@7puzzle.com if you have any queries.

Posted in 7puzzleblog.com | Leave a comment

DAY 322:

Today’s Challenge

You have the same starting number and final answer, both 32, with lots of arithmetical steps in between, but the 10th step is missing! What should it be if it involves adding a whole number?

Start with the number 32, then:

5    ÷9    +4    ×3    3    ÷2    ×5    5    ÷2     ?     ×2    +4    ÷3    ×2    =    32

For the real number puzzle enthusiast, there is another possible step which involves multiplying by a decimal number. What is it?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 1st & 7th columns of the playing board contain the following fourteen numbers:

5    9    13    21    22    24    27    28    32    50    55    56    60    66

What is the sum of the multiples of 7?

Make 322 Challenge

Can you arrive at 322 by inserting 6, 7, 8, 9 and 10 into the gaps below?

◯×[◯²×(◯–◯)+◯] = 322

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 321:

Today’s Challenge

This unique Mathematically Possible question asks you to consider three different combinations of numbers by using each number just once and + – × ÷ available.

  •   2   6   10
  •   3   7   10
  •   4   8   10

What is the only target answer from 10-30 that can be made by ALL three combinations?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 5th & 6th columns of the playing board contain the following fourteen numbers:

7    8    11    14    18    25    30    36    40    44    49    54    64    84

How many cube numbers are listed?

Make 321 Challenge

Can you arrive at 321 by inserting 3, 4, 5, 6 and 7 into the gaps below?

[((◯–◯)×◯)²+◯]×◯ = 321

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 320:

Today’s Challenge

In this particular number puzzle, three UNIQUE digits must be used to arrive at a specified target number; today is 42.  The formula is always the same – multiply two numbers together, then either add or subtract a third number to achieve your target:

  • (a×b)±c, where a, b and c are three unique digits from 1-9.

One way to make 42 is (9×4)+6; can you find the only other two ways of making 42?

[Note:  (9×4)+6 and (4×9)+6 counts as just ONE way.]

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 5th & 6th columns of the playing board contain the following fourteen numbers:

7    8    11    14    18    25    30    36    40    44    49    54    64    84

What is the difference between the highest and lowest multiples of 4?

Make 320 Challenge

Can you arrive at 320 by inserting 10, 20, 30, 40 and 50 into the gaps below?

◯×◯×(◯–◯)÷◯ = 320

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 319:

Today’s Challenge

Apart from 8+3+2+1, list the FOUR other ways of making 14 when adding together 4 unique digits from 1-9 in our latest Kakuro-type challenge.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 3rd & 4th columns of the playing board contain the following fourteen numbers:

3    4    6    12    15    17    20    35    42    63    72    77    80    81

Which pair of numbers have a sum of 50?

Make 319 Challenge

Can you arrive at 319 by inserting 2, 3, 4, 6 and 12 into the gaps below?

[(◯+◯)×◯]²–(◯–◯)² = 319

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 318:

Today’s Challenge

. . . is a number puzzle associated with my board game, Mathematically Possible, an excellent resource involving mental arithmetic and strategy. Click the above link for details of our board game and online programme.

Using the numbers 2, 5 and 10 once each, with + – × ÷ available, which 11 target numbers from 1-30 are mathematically possible to achieve?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 3rd & 4th columns of the playing board contain the following fourteen numbers:

3    4    6    12    15    17    20    35    42    63    72    77    80    81

What is the sum of the square numbers?

Make 318 Challenge

Can you arrive at 318 by inserting 1, 2, 4, 9 and 10 into the gaps below?

(◯+◯)²+(◯+◯)²+◯ = 318

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 317:

Today’s Challenge

Here is a number puzzle similar in concept to my FlagMath card game. Many schools are now playing the various editions, so here’s a taster:

Each of the eight letters, A-H, in the two sections contain a calculation with an answer in the 20’s:

  • Section 1

B:84÷4   G:296   C:3515   D:14+10   A:5×5   H:72÷3   E:7×4   F:16+11

  • Section 2

H:15+12   B:348   F:9×3   E:48÷2   C:11×2   G:60÷3   A:17+12   D:4015

Which is the only letter that has the SAME answer in BOTH sections?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 1st & 2nd columns of the playing board contain the following fourteen numbers:

2    10    13    16    21    22    27    33    45    48    55    56    60    70

How many numbers above become prime numbers when 10 is added to them?

Make 317 Challenge

Can you arrive at 317 by inserting 7, 8, 9, 10 and 11 into the gaps below?

(◯×◯×◯)+(◯×◯) = 317

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 316:

Today’s Challenge

. . . is one from our range of MATHELONA number puzzles now available in pocket book format.  Your task is to make all three lines work out arithmetically by replacing the 12 ◯’s with the following numbers:

0     0     1     1     2     2     2     2     4     5     6     7

Can you successfully complete this?

◯  +  ◯   =    6    =   ◯  –  ◯
◯  +  ◯   =    2    =   ◯  ×  ◯
◯  +  ◯   =    7    =   ◯  ÷  ◯

Full details of our pocket book can be found by clicking MATHELONA.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 1st & 2nd columns of the playing board contain the following fourteen numbers:

2    10    13    16    21    22    27    33    45    48    55    56    60    70

What is the sum of the multiples of 11 listed above?

Make 316 Challenge

Can you arrive at 316 by inserting 2, 4, 5, 6 and 7 into the gaps below?

◯²×◯²–◯×◯×◯ = 316

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 315:

Today’s Challenge

Try this 10-step number trail involving all four arithmetical operations together with numbers from 1 to 10.

Start off with the number 27, then:

  • divide by 3
  • subtract 1
  • multiply by 6
  • add 2
  • ÷10
  • +8
  • 9
  • ×4
  • add 5
  • ÷7

Got an answer? Why not leave a comment below or e-mail me at paul@7puzzle.com.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 2nd & 5th rows of the playing board contain the following fourteen numbers:

6    7    8    16    17    21    28    48    50    55    63    64    81    84

How many multiples of 5 are on the list?

Make 315 Challenge

Can you arrive at 315 by replacing the five letters a b c d and e with 1, 3, 5, 7 and 9?

3(a+b)²+c+d+e = 315

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment