DAY 231:

Today’s Challenge

Try the following MATHELONA-style challenge, similar to those found in our pocket book, details of which can be found by clicking MATHELONA.

Your task is to make all four lines work out arithmetically by replacing the 16 ◯’s below with the following 16 digits.  Can you complete it?

0    0    1    2    2    2    2    4    4    5    5    6    6    7    7    8

◯  +  ◯   =     6     =   ◯  +  ◯
◯  +  ◯   =     5     =   ◯  –  ◯
◯  +  ◯   =    12    =   ◯  ×  ◯
◯  +  ◯   =     7     =   ◯  ÷  ◯

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 2nd & 4th rows of the playing board contain the following fourteen numbers:

3    8    10    17    28    32    35    44    48    54    55    60    63    64

From the list, find two pairs of numbers that each have a difference of 29.

Make 231 Challenge

Can you arrive at 231 by inserting 5, 10, 15, 20 and 25 into the gaps below?

(◯×◯)–◯–(◯÷◯) = 231

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

WELCOME

A warm welcome to 7puzzleblog.com and our compendium of daily number puzzles which we design for our many followers from over 160 countries & territories.

We are also the place to visit for a variety of different mathematical activities, including our exciting and successful venture into online math tuition.  Get in touch for further details.

The World’s #1 Daily Number Puzzle Website

This is official – simply type ‘daily number puzzles‘ into Google or Bing and you’ll see 7puzzleblog.com listed at #1. We appreciate and value your continued support.

Our aim

To improve basic knowledge and confidence of arithmetic in a fun way, so start your numerical adventure by trying to solve our latest number puzzles shown above.

How is our website set up?

As well as scrolling to the top for our most recent challenges, you can click on the dates below to access the remainder of our number puzzles. We will reply to all comments & answers, tweets to @7puzzle and e-mails to paul@7puzzle.com.

We post at least three number puzzles each day from our bumper collection of challenges, one of which is related to the 7puzzle game. Our signature board game is a superb tool for teachers and parents to utilise with children as well as their own personal challenge.

Spread the message

Please tell family, friends, students, colleagues and puzzle enthusiasts about our fabulous daily number puzzles at 7puzzleblog.comAnswers are also provided.

Paul Godding

Author, 7puzzleblog.com

 

January/Ionawr/Enero/Janeiro/Janvier/Eanáir/Gennaio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

February/Chwefror/Febrero/Fevereiro/Février/Feabhra/Febbraio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29

March/Mawrth/Marzo/Março/Mars/Márta/Marzo

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

April/Ebrill/Abril/Abril/Avril/Aibreán/Aprile

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

May/Mai/Mayo/Maio/Mai/Bealtaine/Maggio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

June/Mehefin/Junio/Junho/Juin/Meitheamh/Guigno

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

July/Gorffennaf/Julio/Julho/Juillet/Iúil/Luglio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

August/Awst/Agosto/Agosto/Août/Lúnasa/Agosto

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

September/Medi/Septiembre/Setembro/Septembre/MeánFómhair/Settembre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

October/Hydref/Octubre/Outubro/Octobre/DeireadhFómhair/Ottobre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

November/Tachwedd/Noviembre/Novembro/Novembre/Samhain/Novembre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

December/Rhagfyr/Diciembre/Dezembro/Décembre/Nollaig/Dicembre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

. . . and there’s more!

As well as the thousands of number challenges we continue to develop, some of the other educational activities we are involved in are listed here:

  • supporting students with one-to-one, face-to-face maths tuition locally,
  • . . . and one-to-one online math tuition worldwide,
  • delivering school-based maths/puzzle workshops all over the UK,
  • designing and publicising my board games, card games, puzzles & pocket books that are available for schools, parents and the general public to invest in,
  • advising schools on how to improve children’s skills through board games & puzzles by implementing our tried-and-tested PuzzleFriday scheme.

Further details of all the above can be found by exploring the various pages of this website. Remember, you are always welcome to contact us on twitter @7puzzle or e-mail paul@7puzzle.com if you have any queries.

Posted in 7puzzleblog.com | Leave a comment

DAY 230:

Today’s Challenge

Use all three numbers in each of the five groups below, with + – × ÷ available, to try and make the target of 23. But for one of the groups it can’t be done. Which one?

  •   1    4    6
  •   2    5    5
  •   3    4    5
  •   3    4    6
  •   3    5    6

Full details of my number & strategy board game, click Mathematically Possible.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 1st & 7th rows of the playing board contain the following fourteen numbers:

2    4    9    11    14    15    22    24    27    30    40    70    72    77

Which three different numbers have a sum of 77?

Make 230 Challenge

Can you arrive at 230 by inserting 2, 3, 5, 6 and 7 into the gaps below?

◯×(◯+◯)²+◯×◯ = 230

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 229:

Today’s Challenge

There are five different 24game challenges below.

For each group of four numbers, your task is to arrive at the target answer of 24 by using each of the four digits exactly once, with + – × ÷ available:

  •   1    2    3    4
  •   2    3    4    5
  •   3    4    5    6
  •   4    5    6    7
  •   5    6    7    8

All five challenges are possible, can you do it? Have a go!

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 1st & 7th rows of the playing board contain the following fourteen numbers:

2    4    9    11    14    15    22    24    27    30    40    70    72    77

What is the total when adding together all the odd numbers?

Make 229 Challenge

Can you arrive at 229 by inserting 2, 3, 4, 5 and 7 into the gaps below?

◯²×◯+◯²×◯+◯ = 229

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 228:

Today’s Challenge

You have been given a starting number as well as an end answer. There are seven arithmetical steps in all, but the middle step is missing!

Start with the number 7, then:

2      ×4      +1      ?      ×5      ÷3      +2      =      7

The missing step involves a single-digit whole number.  Work out this missing step so the final answer will also be 7.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 1st & 7th rows of the playing board contain the following fourteen numbers:

2    4    9    11    14    15    22    24    27    30    40    70    72    77

Which four different numbers above have a sum of 100?

Make 228 Challenge

Can you arrive at 228 by inserting 3, 4, 5 and 6 into the gaps below?

◯×(◯²+◯²–◯) = 228

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 227:

Today’s Challenge

Firstly, allocate each letter of the English alphabet a numerical value as follows: A=1, B=2, C=3 . . . Z=26.  When the values of the individual letters are added together, calculate the total value of our maths card game, FLAGMATH.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 1st & 7th rows of the playing board contain the following fourteen numbers:

2    4    9    11    14    15    22    24    27    30    40    70    72    77

What is the sum of the square numbers present on the list?

Make 227 Challenge

Can you arrive at 227 by inserting 1, 2, 3 and 4 into the gaps below?

◯²+(5+◯)³+◯–◯ = 227

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 226:

Today’s Challenge

Can you arrive at the target number of 47 by using all five numbers 1, 2, 3, 4 and 5 exactly once each?  Remember, you have – × and ÷ available to use in your calculation.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 1st & 7th rows of the playing board contain the following fourteen numbers:

2    4    9    11    14    15    22    24    27    30    40    70    72    77

From the list, how many multiples of 8 are there?

Make 226 Challenge

Can you arrive at 226 by inserting 4, 5, 6 and 7 into the gaps below?

◯×◯×◯+◯² = 226

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 225:

Today’s Challenge

Each of the five numbers below is the product of two prime numbers:

15       35       77       143       323

Which is the odd one out, and why?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 5th & 6th rows of the playing board contain the following fourteen numbers:

5    6    7    12    16    18    20    21    33    49    50    56    81    84

What is the sum of the multiples of 7?

Make 225 Challenge

Can you arrive at 225 in two different ways when inserting 3, 4, 5 and 9 into the gaps below?

(◯–◯)×◯×◯² = 225

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 224:

Today’s Challenge

Three UNIQUE digits must be used to arrive at the target number 37.

The rule – players must multiply two numbers together, then either add or subtract the third number to achieve the target answer of 37.

Using the formula (a×b)±c, where a, b and c are three unique digits from 1-9, one way of achieving 37 is (7×5)+2, can you find the other SEVEN ways?

[Note:  (7×5)+2 = 37 and  (5×7)+2 = 37 counts as just ONE way.]

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 5th & 6th rows of the playing board contain the following fourteen numbers:

5    6    7    12    16    18    20    21    33    49    50    56    81    84

From the list, which three different numbers have a sum of 100?

Make 224 Challenge

Can you arrive at 224 by inserting 1, 2, 3 and 4 into the gaps on each line?

  •  (5+◯)×◯×(◯²–◯) = 224
  •  (◯³÷◯)×(2×◯+◯) = 224

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 223:

Today’s Challenge

Try the following MATHELONA challenge, just like the ones in my number puzzle pocket book.  Further details can be found by clicking on MATHELONA.

Your task is to make all three lines work out arithmetically by replacing the 12 ◯’s below with  0  0  1  1  2  2  3  3  4  4  6  6.  Can you do it?

◯  +  ◯   =    4    =   ◯  –  ◯
◯  +  ◯   =    6    =   ◯  ×  ◯
◯  +  ◯   =    3    =   ◯  ÷  ◯

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 5th & 6th rows of the playing board contain the following fourteen numbers:

5    6    7    12    16    18    20    21    33    49    50    56    81    84

What is the answer when the bigger multiple of 10 is divided by the smaller one?

Make 223 Challenge

Can you arrive at 223 by inserting 1, 3, 5 and 7 into the gaps below?

(3+◯)×◯×◯²–◯³ = 223

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment