DAY 269:

Today’s Challenge

There is just one set of three consecutive numbers in ascending order whose sum is less than 50 and follow this sequence:

  •  square number – triangular number – prime number

Can you list this set of three numbers?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 4th & 6th rows contain the following fourteen numbers:

3    5    10    12    18    20    32    33    35    44    49    54    56    60

Which three different numbers have a sum of exactly 100?

Make 269 Challenge

Can you arrive at 269 by inserting 2, 3, 5, 6 and 7 into the gaps below?

(◯+◯+◯)²+(◯+◯)² = 269

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

WELCOME

A warm welcome to 7puzzleblog.com and our compendium of daily number puzzles which we design for our many followers from over 160 countries & territories.

We are also the place to visit for a variety of different mathematical activities, including our exciting and successful venture into online math tuition.  Get in touch for further details.

The World’s #1 Daily Number Puzzle Website

This is official – simply type ‘daily number puzzles‘ into Google or Bing and you’ll see 7puzzleblog.com listed at #1. We appreciate and value your continued support.

Our aim

To improve basic knowledge and confidence of arithmetic in a fun way, so start your numerical adventure by trying to solve our latest number puzzles shown above.

How to use our website

As well as scrolling to the top for our most recent challenges, you can click on the dates below to access the remainder of our number puzzles. We will reply to all comments & answers, tweets to @7puzzle and e-mails to paul@7puzzle.com.

We post at least three number puzzles each day from our bumper collection of challenges, one of which is always related to the 7puzzle game. Our signature board game is a superb tool for teachers and parents to utilise with children as well as their own personal challenge.

Spread the message

Please tell family, friends, students, colleagues and puzzle enthusiasts about our fabulous daily number puzzles at 7puzzleblog.comAnswers are also provided.

Paul Godding

Author, 7puzzleblog.com

January/Ionawr/Enero/Janeiro/Janvier/Eanáir/Gennaio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

February/Chwefror/Febrero/Fevereiro/Février/Feabhra/Febbraio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29

March/Mawrth/Marzo/Março/Mars/Márta/Marzo

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

April/Ebrill/Abril/Abril/Avril/Aibreán/Aprile

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

May/Mai/Mayo/Maio/Mai/Bealtaine/Maggio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

June/Mehefin/Junio/Junho/Juin/Meitheamh/Guigno

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

July/Gorffennaf/Julio/Julho/Juillet/Iúil/Luglio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

August/Awst/Agosto/Agosto/Août/Lúnasa/Agosto

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

September/Medi/Septiembre/Setembro/Septembre/MeánFómhair/Settembre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

October/Hydref/Octubre/Outubro/Octobre/DeireadhFómhair/Ottobre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

November/Tachwedd/Noviembre/Novembro/Novembre/Samhain/Novembre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

December/Rhagfyr/Diciembre/Dezembro/Décembre/Nollaig/Dicembre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

. . . and there’s more!

As well as the thousands of number challenges we continue to develop, some of the other educational activities we are involved in are listed here:

  • supporting students with one-to-one, face-to-face maths tuition locally,
  • . . . and one-to-one online math tuition worldwide,
  • delivering school-based maths/puzzle workshops all over the UK,
  • designing and publicising my board games, card games, puzzles & pocket books that are available for schools, parents and the general public to invest in,
  • advising schools on how to improve children’s skills through board games & puzzles by implementing our tried-and-tested PuzzleFriday scheme.

Further details of all the above can be found by exploring the various pages of this website. Remember, you are always welcome to contact us on twitter @7puzzle or e-mail paul@7puzzle.com if you have any queries.

Posted in 7puzzleblog.com | Leave a comment

DAY 268:

Today’s Challenge

Find the total of the seven different numbers in the range 65 to 85 that are either multiples of 9, 10, 11 or 12.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 4th & 6th rows contain the following fourteen numbers:

3    5    10    12    18    20    32    33    35    44    49    54    56    60

What is the difference between the two highest multiples of 3?

Make 268 Challenge

Can you arrive at 268 by inserting 30, 60, 90, 120 and 150 into the gaps below?

(◯+◯+◯)(◯÷◯) = 268

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 267:

Today’s Challenge

The playing board of Even More Possible, our exciting arithmetic & strategy board game, contains 30 even numbers from 2 up to 60.

Using all four numbers 1, 5, 5 and 10 once each, and with + – × ÷ available, which even number from 2 to 20 is impossible to make?

Full details of the game can be found by clicking this.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 4th & 6th rows contain the following fourteen numbers:

3    5    10    12    18    20    32    33    35    44    49    54    56    60

What is the sum of the odd numbers?

Make 267 Challenge

Can you arrive at 267 by inserting 2, 7, 9, 11 and 13 into the gaps below?

××(◯+◯)–◯ = 267

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 266:

Today’s Challenge

The playing board of Even More Possible, the advanced arithmetic & strategy board game in our Possible Series, contains all 30 even numbers from 2 up to 60.

Using the four numbers 2, 4, 7 and 8 once each (created by rolling the four special dice), with + – × ÷ available, make the following six target numbers from the playing board:

8      18      28      38      48      58

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 4th & 6th rows contain the following fourteen numbers:

3    5    10    12    18    20    32    33    35    44    49    54    56    60

From the list, which three different numbers have a sum of 77?

Make 266 Challenge

Can you arrive at 266 by inserting 1, 2, 3, 4 and 7 into the gaps below?

(◯²+◯)×(◯+◯)²–² = 266

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 265:

Today’s Challenge

. . . is a typical challenge from the excellent American maths card game, 24game.

Using the four numbers 2, 4, 4 and 9 once each, with + – × ÷ available, can you arrive at the target number of 24?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 1st & 5th rows contain the following fourteen numbers:

2    6    7    9    14    15    16    21    22    40    50    72    81    84

Which two numbers, when 16 is added to them, each become a square number?

Make 265 Challenge

Can you arrive at 265 by inserting 2, 4, 7, 8 and 10 into the gaps below?

(◯²+◯–◯)×(◯÷◯) = 265

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 264:

Today’s Challenge

Your task is to make the four lines below work out arithmetically. Simply replace the ◯’s with digits from 0 to 9, but each digit can only be inserted a maximum of twice.

◯  +  ◯   =    12    =   ◯  +  ◯
◯  +  ◯   =     1     =   ◯  –  ◯
◯  +  ◯   =     5     =   ◯  ×  ◯
◯  +  ◯   =     2     =   ◯  ÷  ◯

Click MATHELONA for further details of our popular pocket book challenges.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 1st & 5th rows contain the following fourteen numbers:

2    6    7    9    14    15    16    21    22    40    50    72    81    84

What is the sum of the multiples of 8?

Make 264 Challenge

Can you arrive at 264 by inserting 2, 4, 6, 7 and 9 into the gaps below?

(◯+◯)×(◯+◯)×√◯ = 264

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 263:

Today’s Challenge

One of our popular MATHELONA challenges awaits you, can you complete this by making all four lines work out arithmetically?  Replace the 16 ◯’s with digits 0 to 9, but each digit can only be inserted a maximum of twice.

◯  +  ◯   =    8    =   ◯  +  ◯
◯  +  ◯   =    8    =   ◯  –  ◯
◯  +  ◯   =    8    =   ◯  ×  ◯
◯  +  ◯   =    7    =   ◯  ÷  ◯

Further details of our pocket book of challenges can be found by clicking MATHELONA.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 1st & 5th rows contain the following fourteen numbers:

2    6    7    9    14    15    16    21    22    40    50    72    81    84

Which three different numbers listed have a sum of 100?

Make 263 Challenge

Can you arrive at 263 by inserting 4, 5, 6, 7 and 8 into the gaps below?

(◯×◯×◯)+◯²+◯ = 263

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 262:

Today’s Challenge

Read the following facts to work out my numerical value:

  • I am a 3-digit number less than 200
  • I am a multiple of 11
  • add 4 to me and I become a multiple of 5
  • all my digits are different

Who am I?  Tweet me or e-mail at paul@7puzzle.com with your answer!

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 1st & 5th rows contain the following fourteen numbers:

2    6    7    9    14    15    16    21    22    40    50    72    81    84

How many square numbers are present on the list?

Make 262 Challenge

Can you arrive at 262 by inserting 2, 4, 6, 8 and 10 into the gaps below?

×(×◯–◯)+◯ = 262

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 261:

Today’s Challenge

Your task is to make all four lines below work out arithmetically by replacing the 16 ◯’s with digits from 0 to 9, but each digit can only be used a maximum of twice!

Can you complete this MATHELONA challenge?

◯  +  ◯   =    9    =   ◯  +  ◯
◯  +  ◯   =    3    =   ◯  –  ◯
◯  +  ◯   =    8    =   ◯  ×  ◯
◯  +  ◯   =    2    =   ◯  ÷  ◯

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 1st & 5th rows contain the following fourteen numbers:

2    6    7    9    14    15    16    21    22    40    50    72    81    84

What is the sum of the multiples of 7?

Make 261 Challenge

Can you arrive at 261 by inserting 1, 2, 3, 4 and 5 into the gaps below?

(◯××)²+(◯+◯)² = 261

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment