DAY 290:

Today’s Challenge

When using the numbers 3, 3 and 4 once each, with – × ÷ available, list the TEN target numbers from 1-30 that are mathematically possible to make?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 4th & 7th rows contain the following fourteen numbers:

3    4    10    11    24    27    30    32    35    44    54    60    70    77

Which two numbers listed are the product of two different pairs of numbers on the list?

Make 290 Challenge

Can you arrive at 290 in two different ways when inserting 10, 30, 50, 70 and 90 into the gaps below?

(◯×◯÷◯)+◯ = 290

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

WELCOME

A warm welcome to 7puzzleblog.com and our compendium of daily number puzzles which we design for our many followers from over 160 countries & territories.

We are also the place to visit for a variety of different mathematical activities, including our exciting and successful venture into online math tuition.

The World’s #1 Daily Number Puzzle Website

This is official – simply type ‘daily number puzzles‘ into Google or Bing and you’ll see 7puzzleblog.com listed at #1. We appreciate and value your continued support.

Our aim

To improve basic knowledge and confidence of arithmetic in a fun way, so start your numerical adventure by trying to solve our latest number puzzles shown above.

How to use our website

As well as scrolling to the top for our most recent challenges, you can click on the dates below to access the remainder of our number puzzles. We will reply to all comments & answers, tweets to @7puzzle and e-mails to paul@7puzzle.com.

We now post at least three number puzzles each day from our bumper collection of challenges, one of which is always related to the 7puzzle game.

Our signature board game is a superb tool for teachers and parents to utilise with children as well as their own personal challenge.

Spread the message

Please tell family, friends, students, colleagues and puzzle enthusiasts about our fabulous daily number puzzles at 7puzzleblog.comAnswers are also provided.

Paul Godding

Author, 7puzzleblog.com

January/Ionawr/Enero/Janeiro/Janvier/Eanáir/Gennaio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

February/Chwefror/Febrero/Fevereiro/Février/Feabhra/Febbraio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29

March/Mawrth/Marzo/Março/Mars/Márta/Marzo

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

April/Ebrill/Abril/Abril/Avril/Aibreán/Aprile

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

May/Mai/Mayo/Maio/Mai/Bealtaine/Maggio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

June/Mehefin/Junio/Junho/Juin/Meitheamh/Guigno

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

July/Gorffennaf/Julio/Julho/Juillet/Iúil/Luglio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

August/Awst/Agosto/Agosto/Août/Lúnasa/Agosto

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

September/Medi/Septiembre/Setembro/Septembre/MeánFómhair/Settembre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

October/Hydref/Octubre/Outubro/Octobre/DeireadhFómhair/Ottobre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

November/Tachwedd/Noviembre/Novembro/Novembre/Samhain/Novembre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

December/Rhagfyr/Diciembre/Dezembro/Décembre/Nollaig/Dicembre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

. . . and there’s more!

As well as the thousands of number challenges we continue to develop, some of the other educational activities we are involved in are listed here:

  • supporting students with one-to-one, face-to-face maths tuition locally,
  • . . . and one-to-one online math tuition worldwide,
  • delivering school-based maths/puzzle workshops all over the UK,
  • designing and publicising my board games, card games, puzzles & pocket books that are available for schools, parents and the general public to invest in,
  • advising schools on how to improve children’s skills through board games & puzzles by implementing our tried-and-tested PuzzleFriday scheme.

Further details of all the above can be found by exploring the various pages of this website. Remember, you are always welcome to contact us on twitter @7puzzle or e-mail paul@7puzzle.com if you have any queries.

Posted in 7puzzleblog.com | Leave a comment

DAY 289:

Today’s Challenge

What is the biggest number you can make when using these four digits once each

1         2         3         4

and following these rules:

  • you can use brackets and – × ÷ as often as you like,
  • you cannot use any number more than once,
  • you cannot use powers/indices,
  • you cannot put numbers together (using 1, 2 and 3 to make 123, for example).

Good luck and enjoy!

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 4th & 7th rows contain the following fourteen numbers:

3    4    10    11    24    27    30    32    35    44    54    60    70    77

Find three different numbers that have a sum of 100.

Make 289 Challenge

Can you arrive at 289 by inserting 2, 3, 4, 6 and 7 into the gaps below?

(◯×◯–◯)²+◯²◯² = 289

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 288:

Today’s Challenge

Try and arrive at the target answer of 7 by using each of the numbers 0.2, 0.2, 5 and 6 exactly once each, and with – × ÷ available.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 4th & 7th rows contain the following fourteen numbers:

3    4    10    11    24    27    30    32    35    44    54    60    70    77

What is the product of the two prime numbers listed?

Make 288 Challenge

Can you arrive at 288 by inserting 2, 3, 4, 6 and 8 into the gaps below?

(◯+◯+◯)××◯ = 288

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 287:

Today’s Challenge

When allocating each letter of the English alphabet a numerical value as follows, A=1 B=2 C=3 . . . Z=26, calculate your answer when adding up the values of the individual letters in:

MATHEMATICALLY POSSIBLE

Take a browse at my popular strategy board game by clicking Mathematically Possible.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 4th & 7th rows contain the following fourteen numbers:

3    4    10    11    24    27    30    32    35    44    54    60    70    77

From the list, which three pairs of numbers all have a difference of 17?

Make 287 Challenge

Can you arrive at 287 by inserting 2, 3, 4, 5 and 6 into the gaps below?

◯²×◯²×◯+(◯) = 287

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 286:

Today’s Challenge

This type of calculation is carried out when playing our popular board game, Mathematically Possible.  Click the link for full details.

Using 1, 3 and 5 once each and with – × ÷ available, which 13 target numbers from 1-30 are mathematically possible to make?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 4th & 7th rows contain the following fourteen numbers:

3    4    10    11    24    27    30    32    35    44    54    60    70    77

Which three different numbers have a sum of 77?

Make 286 Challenge

Can you arrive at 286 by inserting 2, 4, 5, 8 and 9 into the gaps below?

(◯+◯)×√◯×(◯+◯) = 286

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 285:

Today’s Challenge

In our FlagMath series of maths card games, players try to find eleven different pairs of answers quicker than their opponents. In our blog question below, you only have to find the one pair.

The two sections both contain nine letters, A-I, each containing a simple addition calculation. Which is the only letter to have the SAME answer in BOTH sections?

  • Section 1

I:3+2   F:6+5   C:8+5   G:7+5   A:7+2   B:6+3   H:8+2   E:5+1   D:2+2

  • Section 2

B:7+1   D:6+6   G:3+1   E:6+2   I:4+2   H:9+4   A:5+4   F:8+4   C:7+3

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 1st & 6th rows contain the following fourteen numbers:

2    5    9    12    14    15    18    20    22    33    40    49    56    72

Find the highest multiple of 7 on the list. What is double this number?

Make 285 Challenge

Can you arrive at 285 by inserting 2, 3, 4, 5 and 6 into the gaps below?

(◯²+◯÷◯)×◯×◯ = 285

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 284:

Today’s Challenge

Another MATHELONA challenge with a difference – no addition calculations at all.

Your task is to make all four lines work out arithmetically by replacing the 16 ◯’s with digits from 0 to 9.  Each digit can only be inserted a maximum of twice:

◯  –  ◯   =    9    =   ◯  ×  ◯
◯  –  ◯   =    7    =   ◯  ÷  ◯
◯  –  ◯   =    5    =   ◯  ×  ◯
◯  –  ◯   =    3    =   ◯  ÷  ◯

Full details of our popular number puzzle can be found by clicking MATHELONA.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 1st & 6th rows contain the following fourteen numbers:

2    5    9    12    14    15    18    20    22    33    40    49    56    72

Which two numbers, when doubled, are also on the list?

Make 284 Challenge

Can you arrive at 284 by inserting 5, 6, 8, 9 and 11 into the gaps below?

(◯²+◯²)×√◯–(◯+◯) = 284

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 283:

Today’s Challenge

. . . is MATHELONA with a difference, not an addition in sight!

But can you still make all four lines work out arithmetically by replacing the 16 ◯’s with digits from 0 to 9?  Remember, each digit can only be inserted a maximum of twice:

◯  –  ◯   =    6    =   ◯  ×  ◯
◯  –  ◯   =    2    =   ◯  ÷  ◯
◯  –  ◯   =    8    =   ◯  ×  ◯
◯  –  ◯   =    1    =   ◯  ÷  ◯

Full details of our pocket book can be found by clicking MATHELONA.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 1st & 6th rows contain the following fourteen numbers:

2    5    9    12    14    15    18    20    22    33    40    49    56    72

Which three different numbers on the list have a sum of 100?

Make 283 Challenge

Can you arrive at 283 by inserting 2, 3, 4, 5 and 6 into the gaps below?

(◯×)+◯³+◯³–◯³ = 283

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 282:

Today’s Challenge

Here’s another MATHELONA challenge based on my popular number puzzles.

Can you make all four lines work out arithmetically by replacing the 16 ◯’s with digits from 0 to 9?  Remember, each digit can only be inserted a maximum of TWICE:

◯  +  ◯   =    7    =   ◯  +  ◯
◯  +  ◯   =    4    =   ◯  –  ◯
◯  +  ◯   =    6    =   ◯  ×  ◯
◯  +  ◯   =    3    =   ◯  ÷  ◯

Full details of our pocket book of challenges can be found by clicking MATHELONA.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 1st & 6th rows contain the following fourteen numbers:

2    5    9    12    14    15    18    20    22    33    40    49    56    72

What is the sum of the multiples of 11?

Make 282 Challenge

Can you arrive at 282 by inserting 1, 2, 3, 4 and 5 into the gaps below?

[²×(+)–◯]×◯ = 282

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment