DAY 346:

Today’s Challenge

. . . is a problem-solving question from a typical Eleven Plus exam many years ago. Can today’s kids solve it?

Twice one hundred and sixty-eight added to four times another number gives a total of four hundred and eighty. What is the other number?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 4th & 7th columns of the playing board contain the following fourteen numbers:

3    5    6    9    20    24    28    32    42    50    63    66    72    77

Which two numbers above, when multiplied by 7, have their answers appearing on the list?

Make 346 Challenge

Can you arrive at 346 by inserting 1, 2, 3, 4 and 5 into the gaps below?

◯³×◯(+)²–² = 346

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

WELCOME

A warm welcome to 7puzzleblog.com and our compendium of daily number puzzles which we design for our many followers from over 160 countries & territories worldwide.

We are also the place to visit for a variety of mathematical activities, including our exciting and successful venture into online maths tuition worldwide.

The World’s #1 Daily Number Puzzle Website

This is official. Simply type daily number puzzles into Google or Bing and you’ll see 7puzzleblog.com listed at #1. We appreciate and value your continued support.

Our aim

To improve basic knowledge and confidence of arithmetic in a fun way, so start your numerical adventure by trying to solve our latest number puzzles shown above.

How to use our website

As well as our most recent challenges above, you can click on the dates below to access the remainder of our number puzzles. We will reply to all comments & answers, tweets to @7puzzle and e-mails to paul@7puzzle.com.

We now post at least three number puzzles each day from our bumper collection of challenges, one of which is always related to the 7puzzle game.

Our signature board game is a superb tool for teachers and parents to utilise with children as well as their own personal challenge.

Spread the message

Please tell family, friends, students, colleagues and puzzle enthusiasts about our fabulous daily number puzzles at 7puzzleblog.comAnswers are also provided.

Paul Godding, Author/Awdur/Autor/Autor/Auteur/Údar/Autore

January/Ionawr/Enero/Janeiro/Janvier/Eanáir/Gennaio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

February/Chwefror/Febrero/Fevereiro/Février/Feabhra/Febbraio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29

March/Mawrth/Marzo/Março/Mars/Márta/Marzo

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

April/Ebrill/Abril/Abril/Avril/Aibreán/Aprile

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

May/Mai/Mayo/Maio/Mai/Bealtaine/Maggio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

June/Mehefin/Junio/Junho/Juin/Meitheamh/Guigno

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

July/Gorffennaf/Julio/Julho/Juillet/Iúil/Luglio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

August/Awst/Agosto/Agosto/Août/Lúnasa/Agosto

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

September/Medi/Septiembre/Setembro/Septembre/MeánFómhair/Settembre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

October/Hydref/Octubre/Outubro/Octobre/DeireadhFómhair/Ottobre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

November/Tachwedd/Noviembre/Novembro/Novembre/Samhain/Novembre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

December/Rhagfyr/Diciembre/Dezembro/Décembre/Nollaig/Dicembre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

. . . and there’s more!

As well as the thousands of number challenges we continue to develop, some of the other educational activities we are involved in are listed here:

  • supporting students with one-to-one, face-to-face maths tuition locally,
  • . . . and one-to-one online math tuition worldwide,
  • delivering school & university-based maths/puzzle workshops all over the UK,
  • designing board games, card games, puzzles & pocket books that are available for schools, parents and the general public to invest in,
  • advising schools on how to improve children’s general arithmetic & social skills by implementing our PuzzleFriday programme.

Further details of all the above can be found by exploring the various pages of this website. Remember, you are always welcome to contact us on twitter @7puzzle or e-mail paul@7puzzle.com if you have any queries. Enjoy your visit!

Posted in 7puzzleblog.com | Leave a comment

DAY 345:

Today’s Challenge

. . . is a gentle logic puzzle for all members of the family to try.

The nine numbers, 1-9, must be placed into the 3 by 3 grid by following the rules below:

  • 3 and 8 are in the top row
  • 4 and 6 are in the bottom row
  • 8 and 7 are in the left-hand column
  • 6 and 9 are in the right-hand column

x              x              1

2              x              x

x              x              x

As the numbers 1 and 2 are already in position, can you insert the remaining numbers from 3-9, once each, into the correct places?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 1st & 6th columns of the playing board contain the following fourteen numbers:

7    13    21    22    27    30    36    40    49    54    55    56    60    64

Find three pairs of numbers that each total 43.

Make 345 Challenge

Can you arrive at 345 by inserting 5, 10, 15, 20 and 25 into the gaps below?

(+÷√◯)×(◯+◯) = 345

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 344:

Today’s Challenge

Can you find the 4-digit number that has all these properties?

  •  its second digit is twice the first,
  •  its fourth digit is three times the third,
  •  all its digits are different,
  •  no two of its digits are consecutive.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 1st & 6th columns of the playing board contain the following fourteen numbers:

7    13    21    22    27    30    36    40    49    54    55    56    60    64

Which two numbers, when each is doubled, also appear on the list?

Make 344 Challenge

Can you arrive at 344 by inserting 1, 2, 3, 4 and 5 into the gaps below?

◯⁵+◯×◯²+◯–◯ = 344

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 343:

Today’s Challenge

. . . sees another posting of this popular question where you follow the rules and eliminate every number, except one.

From the numbers 1-50, eliminate:

  • numbers containing a 1, 3, 5 or 7
  • even numbers
  • square numbers

There is just one number left, which one?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 3rd & 5th columns of the playing board contain the following fourteen numbers:

4    8    11    12    14    15    17    18    25    35    44    80    81    84

What is the difference between the highest multiples of 8 and 9?

Make 343 Challenge

Can you arrive at 343 by inserting 1, 2, 3, 4 and 5 into the gaps below?

[(◯×◯×◯)–(◯×◯)]³ = 343

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 342:

Today’s Challenge

. . . is a regular favourite of ours where at least one decimal number is present in trying to arrive at our signature target number, 7.

Using the numbers 0.25, 2, 4 and 6 once each, and with the four arithmetical operations – × ÷ available, can you arrive at 7 in two completely different ways?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 3rd & 5th columns of the playing board contain the following fourteen numbers:

4    8    11    12    14    15    17    18    25    35    44    80    81    84

How many pairs of consecutive numbers are listed?

Make 342 Challenge

Can you arrive at 342 by inserting 2, 3, 4, 5 and 5 into the gaps below?

(◯²+◯+◯)×(◯²+◯) = 342

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 341:

Today’s Challenge

All the following 3-digit numbers are divisible by 4, except one!  Which one is it?

228   276   308   336   412   484   528   552   660   794   888   944

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 2nd & 7th columns of the playing board contain the following fourteen numbers:

2    5    9    10    16    24    28    32    33    45    48    50    66    70

What is the product of the single-digit numbers?

Make 341 Challenge

Can you arrive at 341 by inserting 2, 3, 4, 5 and 6 into the gaps on both lines?

  •  (◯²–◯–◯)×(◯²–◯) = 341
  •  (◯+◯)³–(◯×◯)÷◯ = 341

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 340:

Today’s Challenge

List the only two numbers below 100 that have exactly 10 factors.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 2nd & 7th columns of the playing board contain the following fourteen numbers:

2    5    9    10    16    24    28    32    33    45    48    50    66    70

What is the sum of the multiples of 9?

Make 340 Challenge

Can you arrive at 340 by inserting 3, 4, 5, 10 and 17 into the gaps below?

◯×◯×(◯+◯)÷◯ = 340

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 339:

Today’s Challenge

. . . is another version of our popular number puzzle where clues are given to help you find a particular number from the following facts:

  • I am represented by just one word when written in English,
  • On one side of me is a multiple of 3, on the other side is a multiple of 4,
  • When you add 8 to me, I become a square number.

Who am I?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 4th & 6th columns of the playing board contain the following fourteen numbers:

3    6    7    20    30    36    40    42    49    54    63    64    72    77

Can you find four different numbers from the list that have a sum of exactly 100?

Make 339 Challenge

Can you arrive at 339 by inserting 2, 3, 5, 6 and 7 into the gaps below?

(◯²×◯×◯)–(◯×◯) = 339

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 338:

Today’s Challenge

. . . is a number trail question which involves twelve arithmetical steps.

Start with the number 21, then:

  • 1/3 of this
  • multiply by seven
  • +23
  • ÷3
  • +75%
  • +5
  • 7
  • Find 10% of this
  • Square this
  • +2
  • Double this
  • Square root of this

What is your final answer?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 4th & 6th columns of the playing board contain the following fourteen numbers:

3    6    7    20    30    36    40    42    49    54    63    64    72    77

Which two numbers, when 10 is added to them, both become square numbers?

Make 338 Challenge

Can you arrive at 338 by inserting 2, 3, 4, 6 and 7 into the gaps below?

[(◯+◯)³+(◯×◯)]÷◯ = 338

Answers can be found here.

Click Paul Godding for details of online math tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment