Daily Number Puzzles

the7puzzlecompanyWelcome to 7puzzleblog.com - probably the best number puzzle website in the world.

We do many things at the 7puzzle company, one of which is to produce daily number puzzles for our many followers from over 140 different countries and territories around the world. Our overall aim is to help improve people’s basic knowledge and confidence of number and arithmetic in a fun and non-threatening way.

Our bumper compendium of challenges at 7puzzleblog.com contains one number puzzle for each day of the year.  Attempting these is great preparation for any mathematics test/exam that may be looming in the near future.

Click on the dates below to access our number puzzles, we will reply to all answers requested or received.

the7puzzlecompany

Send us your thoughts by leaving a comment at the bottom of each challenge page or by tweeting @7puzzle or alternatively e-mailing us at paul@7puzzle.com.

Enjoy your visit to 7puzzleblog.com and spread the message about our fabulous daily number puzzles to your family, friends, students and colleagues as well as any puzzle enthusiasts you may know.

To find out more about the 7puzzle company, simply click this link.

Paul Godding: Owner, the 7puzzle company

.

January/Ionawr/Enero/Janeiro/Janvier/Eanáir/Gennaio

1        2        3        4        5        6        7

8       9       10       11       12       13       14

15       16       17       18       19       20       21

22       23       24       25       26       27       28

29       30       31

.

February/Chwefror/Febrero/Fevereiro/Février/Feabhra/Febbraio

1        2        3        4        5        6        7

8       9       10       11       12       13       14

15       16       17       18       19       20       21

22       23       24       25       26       27       28

29

.

March/Mawrth/Marzo/Março/Mars/Márta/Marzo

1        2        3        4        5        6        7

8       9       10       11       12       13       14

15       16       17       18       19       20       21

22       23       24       25       26       27       28

29       30       31

.

April/Ebrill/Abril/Abril/Avril/Aibreán/Aprile

1        2        3        4        5        6        7

8       9       10       11       12       13       14

15       16       17       18       19       20       21

22       23       24       25       26       27       28

29       30

.

May/Mai/Mayo/Maio/Mai/Bealtaine/Maggio

1        2        3        4        5        6        7

8       9       10       11       12       13       14

15       16       17       18       19       20       21

22       23       24       25       26       27       28

29       30       31

.

June/Mehefin/Junio/Junho/Juin/Meitheamh/Guigno

1        2        3        4        5        6        7

8       9       10       11       12       13       14

15       16       17       18       19       20       21

22       23       24       25       26       27       28

29       30

.

July/Gorffennaf/Julio/Julho/Juillet/Iúil/Luglio

1        2        3        4        5        6        7

8       9       10       11       12       13       14

15       16       17       18       19       20       21

22       23       24       25       26       27       28

29       30       31

.

August/Awst/Agosto/Agosto/Août/Lúnasa/Agosto

1        2        3        4        5        6        7

8       9       10       11       12       13       14

15       16       17       18       19       20       21

22       23       24       25       26       27       28

29       30       31

.

September/Medi/Septiembre/Setembro/Septembre/MeánFómhair/Settembre

1        2        3        4        5        6        7

8       9       10       11       12       13       14

15       16       17       18       19       20       21

22       23       24       25       26       27       28

29       30

.

October/Hydref/Octubre/Outubro/Octobre/DeireadhFómhair/Ottobre

1        2        3        4        5        6        7

8       9       10       11       12       13       14

15       16       17       18       19       20       21

22       23       24       25       26       27       28

29       30       31

.

November/Tachwedd/Noviembre/Novembro/Novembre/Samhain/Novembre

1        2        3        4        5        6        7

8       9       10       11       12       13       14

15       16       17       18       19       20       21

22       23       24       25       26       27       28

29       30

.

December/Rhagfyr/Diciembre/Dezembro/Décembre/Nollaig/Dicembre

1        2        3        4        5        6        7

8       9       10       11       12       13       14

15       16       17       18       19       20       21

22       23       24       25       26       27       28

29       30       31

.the7puzzlecompany

Posted in 7puzzleblog.com | Leave a comment

. . . and there’s more!

In addition to clicking on the above dates to access our number puzzles, there are hundreds of other number challenges to be found at 7puzzleblog.com if you delve deeply enough!

If you are interested in the many educational activities the 7puzzle company is currently involved in, click these appropriate links:

The main objective of the 7puzzle company is to spread the message about the positive impact games & puzzles can have in the classroom, and so help to improve maths skills of children everywhere.

We successfully do this through our innovative PuzzleFriday concept and recommend all schools to invest in the tried and tested PuzzleFriday Packs of resources.  Our latest creation – the FlagMath series of card games – has been added to our packs and made them even more appealing, beneficial and effective.

You can also follow my tweets at @7puzzle or e-mail me at paul@7puzzle.com.

the7puzzlecompany

Posted in 7puzzleblog.com | 1 Comment

DAY 243

We invite you to use seven 3′s (3, 3, 3, 3, 3, 3 and 3) once each, with + – × ÷ available, to make various target numbers.

For instance, to make 1 and 2, you could do:

  • [3 × (3÷3)] – (3÷3) – (3÷3)  =  1
  • [(3+3) ÷ 3] × (3÷3) × (3÷3)  =  2  . . .  and so on.

Continuing as above, what is the lowest whole number it is NOT possible to make when using the seven 3′s?

MathelonaLogo

Posted in 7puzzleblog.com | Leave a comment

DAY 242

Question 1:

In the 2008 Beijing Summer Olympic Games the host country, China, and the United States were the top two countries in the official Medals Table, followed by Russia and Great Britain, as shown below:

  1. China – 51 Gold; 21 Silver; 28 Bronze
  2. USA – 36 Gold; 38 Silver; 36 Bronze
  3. Russia – 23 Gold; 21 Silver; 28 Bronze
  4. Great Britain – 19 Gold; 13 Silver; 15 Bronze

If 10 points were awarded for every Gold, 5 points for a Silver and 2 points for a Bronze, how many points would each country achieve?

Question 2:

In London 2012, the same four countries occupied the top four places but in a different order:

  1. USA – 46 Gold; 29 Silver; 29 Bronze
  2. China – 38 Gold; 27 Silver; 23 Bronze
  3. Great Britain – 29 Gold; 17 Silver; 19 Bronze
  4. Russia – 24 Gold; 26 Silver; 32 Bronze

If the exact same points system was applied as above, by how many points would USA beat China?

MathelonaLogo

Posted in 7puzzleblog.com | Leave a comment

DAY 241

The following type of calculation is carried out every move when playing my arithmetic and strategy board game, the possible game. Check out mathematicallypossible.com for full details.

Using the numbers 3, 5 and 6 once each, and with + – × ÷ available, which three target answers from 1-9 are NOT mathematically possible to achieve?

MathelonaLogo

Posted in 7puzzleblog.com | Leave a comment

DAY 240

Following on from DAY 187, here’s another one of the unique Keith Number challenges. This was made famous by Mike Keith and if you like playing around with numbers, have a go at this fun concept.

The first 2-digit Keith Number, 14, is worked out as follows:

  • 1+4=5; 4+5=9; 5+9=14 (the total arrives back to the original number).

The second 2-digit Keith Number, 19, is worked out as follows:

  • 1+9=10; 9+10=19 (the total arrives back to the original number).

By following this pattern, what are the third and fourth 2-digit Keith Numbers? (Hint: both are less than 50)

MathelonaLogo

Posted in 7puzzleblog.com | Leave a comment

DAY 239

In this particular number puzzle, three UNIQUE digits from 1-9 must be used to arrive at a specified target number. The formula is simple – multiply two numbers together, then either add or subtract the third number to achieve your goal, but the three numbers used must all be different.

You must try to arrive at the answer of 19 by using the formula (a × b) ± c where a, b and c are three unique digits from 1-9.

One way to make 19 is (7 × 2) + 5, can you find the other THIRTEEN ways?

[Note.  (7 × 2) + 5 = 19 and  (2 × 7) + 5 = 19 counts as just ONE way]

MathelonaLogo

Posted in 7puzzleblog.com | Leave a comment

DAY 238

Here’s an 11-step number trail involving the four arithmetical operations and the numbers 4 and 5.

We will start with the number 5, then:

  • +5
  • ÷5
  • multiply by 4
  • subtract 4
  • ×5
  • add 5
  • divide by 5
  • add 4
  • 5
  • ÷4
  • ×4

What is your final answer?

MathelonaLogo

Posted in 7puzzleblog.com | Leave a comment

DAY 237

Simply, what is the sum of the first ten odd numbers?

If, in getting to the above, you’ve also found the sum of the first six odd numbers, first seven odd numbers, etc. what do you notice about all these answers?

MathelonaLogo

Posted in 7puzzleblog.com | Leave a comment

DAY 236

Study the seven clues below and place the numbers 1-9 into the nine positions of the grid. Each number should appear exactly once:

x              x              x

x              x              x

x              x              x

Clues:

  1. The 6 is higher than the 7, but lower than the 3,
  2. The 3 is further right than the 9,
  3. The 9 is next to, and directly above, the 2,
  4. The 2 is next to, and directly right of, the 5,
  5. The 5 is higher than the 1,
  6. The 1 is next to, and directly left of, the 4,
  7. The 4 is further right than the 7.

MathelonaLogo

Posted in 7puzzleblog.com | Leave a comment