DAY 18:

Today’s Challenge

The numbers 21 to 29 inclusive must be allocated to each letter below so that each number satisfies the condition given on the line and only appears once:

  • (a) even number,
  • (b) factor of 144,
  • (c) power of 3,
  • (d) prime number,
  • (e) digits which differ by 1,
  • (f) exactly 3 factors,
  • (g) multiple of 7,
  • (h) equal to the sum of all its factors (except the number itself),
  • (i) 2nd digit is greater than its 1st digit.

Remember, the numbers 21 to 29 should only appear once each.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 1st & 7th rows of the playing board contain the following fourteen numbers:

2   4   9   11   14   15   22   24   27   30   40   70   72   77

Which odd number, when 21 is added to it, becomes a square number?

Make 18 Challenge

Can you arrive at 18 by inserting 2, 3, 4 and 6 into the gaps on each line?

  •  ◯×◯–◯×◯ = 18
  •  ◯÷◯×◯×◯² = 18
  •  (◯÷◯)³×√◯÷◯ = 18

Answers can be found here.

Click Paul Godding for details of online maths tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

WELCOME


A warm welcome to 7puzzleblog.com and our compendium of daily number puzzles which we design for our many followers from over 160 countries & territories worldwide.

We are also the place to visit for a variety of mathematical activities, including our exciting and successful venture into online maths tuition worldwide.

The World’s #1 Daily Number Puzzle Website

This is official. Simply type daily number puzzles into Google or Bing and you’ll see 7puzzleblog.com listed at #1. We appreciate and value your continued support.

Our aim

To improve basic knowledge and confidence of arithmetic in a fun way, so start your numerical adventure by trying to solve our latest number puzzles shown above.

How to use our website

As well as our most recent challenges above, you can click on the dates below to access the remainder of our number puzzles. We will reply to all comments & answers, tweets to @7puzzle and e-mails to paul@7puzzle.com.

We now post at least three number puzzles each day from our bumper collection of challenges, one of which is always related to the 7puzzle game.

Our signature board game is a superb tool for teachers and parents to utilise with children as well as their own personal challenge.

Spread the message

Please tell family, friends, students, colleagues and puzzle enthusiasts about our fabulous daily number puzzles at 7puzzleblog.comAnswers are also provided.

Paul Godding

Author/Awdur/Autor/Autor/Auteur/Údar/Autore

January/Ionawr/Enero/Janeiro/Janvier/Eanáir/Gennaio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

February/Chwefror/Febrero/Fevereiro/Février/Feabhra/Febbraio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29

March/Mawrth/Marzo/Março/Mars/Márta/Marzo

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

April/Ebrill/Abril/Abril/Avril/Aibreán/Aprile

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

May/Mai/Mayo/Maio/Mai/Bealtaine/Maggio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

June/Mehefin/Junio/Junho/Juin/Meitheamh/Guigno

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

July/Gorffennaf/Julio/Julho/Juillet/Iúil/Luglio

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

August/Awst/Agosto/Agosto/Août/Lúnasa/Agosto

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

September/Medi/Septiembre/Setembro/Septembre/MeánFómhair/Settembre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

October/Hydref/Octubre/Outubro/Octobre/DeireadhFómhair/Ottobre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

November/Tachwedd/Noviembre/Novembro/Novembre/Samhain/Novembre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30

December/Rhagfyr/Diciembre/Dezembro/Décembre/Nollaig/Dicembre

1        2        3        4        5        6        7        8

9       10       11       12       13       14       15       16

17       18       19       20       21       22       23       24

25       26       27       28       29       30       31

. . . and there’s more!

As well as the thousands of number challenges we continue to develop, some of the other educational activities we are involved in are listed here:

  • supporting students with one-to-one, face-to-face maths tuition locally,
  • . . . and one-to-one online math tuition worldwide,
  • delivering school & university-based maths/puzzle workshops all over the UK,
  • designing board games, card games, puzzles & pocket books that are available for schools, parents and the general public to invest in,
  • advising schools on how to improve children’s general arithmetic & social skills by implementing our PuzzleFriday programme.

Further details of all the above can be found by exploring the various pages of this website.

Remember, you are always welcome to contact us on twitter @7puzzle or e-mail paul@7puzzle.com if you have any queries. Enjoy your visit!

Posted in 7puzzleblog.com | Leave a comment

DAY 17:

Today’s Challenge

Find the answer to this large number trail which involves fourteen arithmetical steps and includes fraction and percentage calculations.  Start with the number 11, then:

  • double it
  • 50% of this
  • +50
  • subtract thirty-five
  • ÷2
  • +37
  • 3/5 of this
  • +70
  • 2%
  • 1/2 of this
  • +311
  • subtract twenty
  • add ten
  • ÷7

What is your final answer?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 1st & 7th rows of the playing board contain the following fourteen numbers:

2   4   9   11   14   15   22   24   27   30   40   70   72   77

What is the difference between the highest multiples of 5 and 6?

Make 17 Challenge

Can you arrive at 17 by inserting 2, 5, 6 and 6 into the gaps on each line?

  •  ◯²–√(◯×◯)–◯ = 17
  •  ◯²×◯÷◯+◯ = 17
  •  (◯÷◯+◯)×◯ = 17

Answers can be found here.

Click Paul Godding for details of online maths tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 16:

Today’s Challenge

What is the sum of the 50 integers (or whole numbers) from 1 through to 50 inclusive?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 1st & 7th rows of the playing board contain the following fourteen numbers:

2   4   9   11   14   15   22   24   27   30   40   70   72   77

What is the sum of the factors of 24 listed above?

Make 16 Challenge

Can you arrive at 16 by inserting 3, 4, 6 and 8 into the gaps on each line?

  •  ◯×◯×◯÷◯ = 16
  •  ◯²–◯×(◯–◯) = 16
  •  ÷◯׳√◯×◯ = 16

Answers can be found here.

Click Paul Godding for details of online maths tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 15:

Today’s Challenge

Your task is to multiply two numbers together and then subtract a third number to achieve the target answer of 7. The three numbers used in each calculation must all be unique digits from 1-9.

For example, one such way of making 7 is (4×3)5. Can you find SIX other ways to make 7?

[Note:  (4×3)5 = 7  and  (3×4)5 = 7  counts as ONE way]

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 5th & 6th rows of the playing board contain the following fourteen numbers:

5   6   7   12   16   18   20   21   33   49   50   56   81   84

What answer do you get when subtracting the total of the prime numbers from the sum of the multiples of 10?

Make 15 Challenge

Can you arrive at 15 by inserting 2, 3, 5 and 6 into the gaps on each line?

  •  ◯×◯+◯◯ = 15
  •  ◯÷ײ×◯ = 15
  •  ◯²–(◯+◯)× = 15

Answers can be found here.

Click Paul Godding for details of online maths tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 14:

Today’s Challenge

There are five different ways of making 8 when combining and adding together either two or three unique digits from 1-9.  One way is 7+1 (or 1+7), can you find the other four?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 5th & 6th rows of the playing board contain the following fourteen numbers:

5   6   7   12   16   18   20   21   33   49   50   56   81   84

What is the difference between the highest and lowest odd numbers?

Make 14 Challenge

Can you arrive at 14 by inserting 2, 4, 5 and 5 into the gaps on each line?

  •  ◯+◯+◯+√◯ = 14
  •  ◯²–(◯+◯+◯) = 14
  •  (◯+÷◯)× = 14

Answers can be found here.

Click Paul Godding for details of online maths tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 13:

Today’s Challenge

Starting from 2, list the first seven even numbers that are NOT multiples of 3, 5 or 7. What is the 7th number in your list?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 5th & 6th rows of the playing board contain the following fourteen numbers:

5   6   7   12   16   18   20   21   33   49   50   56   81   84

What is the sum of the multiples of 8?

Make 13 Challenge

Can you arrive at 13 by inserting 1, 2, 3 and 4 into the gaps on each line?

  •  ◯×◯+◯–◯ = 13
  •  ◯×(◯+◯)+ = 13
  •  (²+²+◯)÷◯ = 13

Answers can be found here.

Click Paul Godding for details of online maths tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 12:

Today’s Challenge

Add together the 7th prime number, the 7th square number, the 7th 2-digit number and the 7th whole number that contains a ‘7’. What is your answer?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 5th & 6th rows of the playing board contain the following fourteen numbers:

5   6   7   12   16   18   20   21   33   49   50   56   81   84

Which two numbers listed have a sum of 101?

Make 12 Challenge

Can you arrive at 12 by inserting 2, 3, 4 and 6 into the gaps on each line?

  •  (◯–◯)×◯×◯ = 12
  •  ◯×◯(◯+◯) = 12
  •  ◯÷◯×(◯+◯) = 12
  •  ◯²–◯×◯÷◯ = 12
  •  (◯²+◯³)×◯÷◯ = 12

Answers can be found here.

Click Paul Godding for details of online maths tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 11:

Today’s Challenge

Today’s task is to arrive at the target number of 7 by using the four numbers 7, 7, 7 and 7 once each.  All four arithmetic operations + – × ÷ are available.  Can you make it?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 5th & 6th rows of the playing board contain the following fourteen numbers:

5   6   7   12   16   18   20   21   33   49   50   56   81   84

From this list, what is the sum of the square numbers?

Make 11 Challenge

Can you arrive at 11 by inserting 2, 3, 4 and 5 into the gaps on each line?

  •  ◯×◯+◯–◯ = 11
  •  ◯÷◯×◯+◯ = 11
  •  ◯²[◯×(◯+◯)] = 11

Answers can be found here.

Click Paul Godding for details of online maths tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment

DAY 10:

Today’s Challenge

Using seven 7’s (7, 7, 7, 7, 7, 7 and 7) once each, with + – × ÷ available, it is possible to make various target answers, such as 7 as shown here:

  • 7+7+7+7777 = 7,  or perhaps
  • 7×(7÷7)×(7÷7)×(7÷7) = 7

In a similar way, can you make the target answers 1, 2 and 3?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 3rd & 4th rows of the playing board contain the following fourteen numbers:

3   10   13   25   32   35   36   42   44   45   54   60   66   80

What is the sum of the multiples of 4?

Make 10 Challenge

Can you arrive at 10 by inserting 2, 2, 3 and 5 into the gaps on each line?

  •  (◯–◯)×◯×◯ = 10
  •  (◯–◯÷◯)×◯ = 10
  •  (◯²–◯–◯)÷◯ = 10
  •  ◯÷(◯–◯÷◯) = 10

Answers can be found here.

Click Paul Godding for details of online maths tuition. Wherever you are in the world, please get in touch.

Posted in 7puzzleblog.com | Leave a comment