DAY/DYDD/PÄIVÄ/NAP 88

T he Main Challenge

In our latest Mathelona challenge, can you place the 12 listed numbers into the 12 gaps so all three lines work out arithmetically?

0    1    1    2    2    3    4    5    6    7    8    9

◯  +  ◯   =     1     =   ◯  –  ◯
◯  +  ◯   =    12    =   ◯  ×  ◯
◯  +  ◯   =     3     =   ◯  ÷  ◯

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 4th & 5th rows contain the following fourteen numbers:

3   6   7   10   16   21   32   35   44   50   54   60   81   84

Which two different numbers have a sum of 100?

The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every positive integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

There are just TWO ways of making 88 when using Lagrange’s Theorem. Can you find them both?

The Mathematically Possible Challenge

Using 23 and 11 once each, with + – × ÷ available, which SIX numbers is it possible to make from the list below?

2    3    5    7    11    13    17    19    23    29

The Target Challenge

Can you arrive at 88 by inserting 1, 4, 8 and 10 into the gaps on each line?

•  ²–◯×(◯+◯) = 88
•  (◯+◯)×◯–√◯ = 88
•  (◯+◯)×◯×³ = 88

Answers can be found here.

Click Paul Godding for details of online maths tuition.

This entry was posted in 7puzzleblog.com. Bookmark the permalink.

This site uses Akismet to reduce spam. Learn how your comment data is processed.