# DAY/DYDD/GIORNO/NAP 214: T he Main Challenge

By using the numbers 4, 5, 7 and 8 exactly once each, and with the four arithmetical operations + – × ÷ available, can you arrive at the target answer of 12 in two different ways? The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 1st & 2nd rows of the playing board contain the following fourteen numbers:

2   8   9   14   15   17   22   28   40   48   55   63   64   72

From the list, find FOUR different numbers that total 100. The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every positive integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

There are TEN different ways to make 214 when using Lagrange’s Theorem. How many can you find? The Mathematically Possible Challenge

Using 46 and once each, with + – × ÷ available, which are the only THREE numbers it is possible to make from the list below?

5    10    15    20    25    30    35    40    45    50

#5TimesTable The Target Challenge

Can you arrive at 214 by inserting 2610 and 20 into the gaps on each line?

•  (◯+◯)×◯–◯ = 214
•  ◯×◯+◯+double◯ = 214
•  (◯+◯)²–(◯+double◯) = 214 Answers can be found here. Click Paul Godding for details of online maths tuition. This entry was posted in 7puzzleblog.com. Bookmark the permalink.

This site uses Akismet to reduce spam. Learn how your comment data is processed.