DAY 365:

The Main Challenge

You have rolled 1, 5 and 6 on your three dice:

Part 1: What is the highest target number in the range 1-30 that is possible to achieve using these three numbers once each, and with + – × ÷ available?

Click on Mathematically Possible to gather more details of our arithmetic and strategy board game.

Part 2: Similar to Part 1, but which whole numbers in the range 1-10 can be made?

Click Roll3Dice to play a simplified version of the arithmetic part at home.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The Top-Left to Bottom-Right diagonal contains the following seven numbers:

3     22     24     48     49     80     84

Using these seven numbers exactly once each, with + – × ÷ available to use in your calculation, can you arrive at the target number of 100?

The Factors Challenge

Which numbers below are factors of 365?

15   25   35   45   55   65   75   85   95   None of them

The Mathematically Possible Challenge

Using 48 and 12 once each, with + – × ÷ available, which FOUR numbers is it possible to make from the list below?

2    3    5    7    11    13    17    19    23    29

#PrimeNumbers

The Target Challenge

Can you arrive at 365 by inserting 2, 3, 4, 5 and 6 into the gaps below?

  •  (◯²×+◯–◯)×◯ = 365

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment

DAY 364:

The Main Challenge

You have been given a starting number of 7. Carry out the following 28 calculations to achieve the final answer. Will you have the stamina to get it right? Here we go!

Start with 7, then:

+19 . . . one-half of this . . . +49 . . . 50% of this . . . +11 . . . ÷7 . . . ×9 . . . subtract twenty-nine . . . ÷5 . . . ×12 . . . one-third of this . . . add fourteen . . . subtract one . . . divide by three . . . 4 . . . ×4 . . . subtract fourteen . . . +1 . . . ÷3 . . . add thirty-three . . . ÷2 . . . 2 . . . +3 . . . divide by two . . . plus four . . . multiply by 1 . . . –11 . . . ×3   =   ?

What is your answer?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 7th column contains the following seven numbers:

5     9     24     28     32     50     66

Using these seven numbers exactly once each, with + – × ÷ available to use in your calculation, can you arrive at the target number of 100?

The Factors Challenge

Which FOUR numbers below are factors of 364?

3    4    5    6    7    8    9    10    11    12    13    14    15    16

The Mathematically Possible Challenge

Using 48 and 12 once each, with + – × ÷ available, which THREE numbers is it possible to make from the list below?

1     8     27     64     125     216

#CubeNumbers

The Target Challenge

Can you arrive at 364 by inserting 2, 4, 5, 6 and 7 into the gaps below?

  •  (◯++◯)×◯×◯ = 364

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment

DAY 363:

The Main Challenge

Your task is to make the target number of 15 by adding together five numbers. You are limited to using 1 to 5, but these can be used any number of times in each calculation.

One such way of making 15 is 3+3+3+3+3.  How many other ways can you find?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 6th column contains the following seven numbers:

7     30     36     40     49     54     64

Using these seven numbers exactly once each, with + – × ÷ available to use in your calculation, can you arrive at the target number of 100?

The Factors Challenge

Which TWO numbers below are factors of 363?

3    5    7    9    11    13    15    17    19

The Mathematically Possible Challenge

Using 48 and 12 once each, with + – × ÷ available, which FOUR numbers is it possible to make from the list below?

1    4    9    16    25    36    49    64    81    100

#SquareNumbers

The Target Challenge

Can you arrive at 363 by inserting 1, 2, 3, 4 and 5 into the gaps below?

  •  (◯×◯–◯)²×(◯–◯) = 363

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment

DAY 362:

The Main Challenge

This a number puzzle similar to my Mathelona series of challenges, but much more difficult.

Your task is to fill all 24 gaps below with the numbers 1-24.  Each number should appear once each and ALL eight lines/equations must work out arithmetically.

◯   +   ◯   =   ◯
◯   +   ◯   =   ◯
◯   +   ◯   =   ◯
◯   +   ◯   =   ◯
◯   +   ◯   =   ◯
◯   +   ◯   =   ◯
◯   +   ◯   =   ◯
◯   +   ◯   =   ◯

If you enjoy, feel free to click Mathelona to find out more, or even place an order for my pocket book of number puzzles.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 5th column contains the following seven numbers:

8     11     14     18     25     44     84

Using these seven numbers exactly once each, with + – × ÷ available to use in your calculation, can you arrive at the target number of 100?

The Factors Challenge

Which of the numbers below are factors of 362?

4    6    8    10    12    14    16    18    None of them

The Mathematically Possible Challenge

Using 48 and 12 once each, with + – × ÷ available, which are the only TWO numbers it is possible to make from the list below?

11    22    33    44    55    66    77    88    99    110

#11TimesTable

The Target Challenge

Can you arrive at 362 by inserting 4, 9, 16, 25 and 36 into the gaps below?

  •  ◯×(+√◯–√◯)+√◯ = 362

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment

DAY 361:

The Main Challenge

You’ve rolled the numbers 2, 2 and 2 with your three dice.  Using these once each, with + – × ÷ available, which FIVE target numbers from 1-10 is it possible to make?

Visit Roll3Dice.com and the hashtags #Roll3Dice or #R3D for details of our initiative.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 4th column contains the following seven numbers:

3     6     20     42     63     72     77

Using these seven numbers exactly once each, with + – × ÷ available to use in your calculation, can you arrive at the target number of 100?

The Factors Challenge

Which is the ONLY number below that is a factor of 361?

3    5    7    9    11    13    15    17    19

The Mathematically Possible Challenge

Using 48 and 12 once each, with + – × ÷ available, which FIVE numbers is it possible to make from the list below?

10    20    30    40    50    60    70    80    90    100

#10TimesTable

The Target Challenge

Can you arrive at 361 by inserting 1, 2, 2, 3 and 3 into the gaps below?

  •  ◯³×◯²×(◯+◯)+◯ = 361

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment

DAY 360:

The Main Challenge

Players must multiply two numbers together, then either add or subtract the third number to achieve your target answer of 25, so the formula is (a×b)±c, where a b c are three UNIQUE digits from 1-9.

One way of achieving 25 is (8×2)+9, can you find the other EIGHT ways?

[ Note:  (8×2)+9 = 25  and  (2×8)+9 = 25 counts as just ONE way ]

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 3rd column contains the following seven numbers:

4     12     15     17     35     80     81

Using these seven numbers exactly once each, with + – × ÷ available to use in your calculation, can you arrive at the target number of 100?

The Factors Challenge

Which FIVE numbers below are factors of 360?

10    11    12    13    14    15    16    17    18    19    20

The Mathematically Possible Challenge

Using 48 and 12 once each, with + – × ÷ available, which are the only TWO numbers it is NOT possible to make from the list below?

8    16    24    32    40    48    56    64    72    80

#8TimesTable

The Target Challenge

Can you arrive at 360 by inserting 3, 5, 10, 12 and 20 into the gaps below?

  •  ◯××◯×◯÷◯ = 360

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment

DAY 359:

The Main Challenge

. . . involves number combinations and addition, both necessary to master if players are to successfully complete the fabulous Kakuro puzzle.

As well as 9+8+7+1 (or 9871), list the five other ways of making 25 when adding together FOUR unique digits from 1-9.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 2nd column contains the following seven numbers:

2     10     16     33     45     48     70

Using these seven numbers exactly once each, with + – × ÷ available to use in your calculation, can you arrive at the target number of 100?

The Factors Challenge

Which of the numbers below are factors of 359?

3    5    7    9    11    13    15    17    19    None of them

The Mathematically Possible Challenge

Using 48 and 12 once each, with + – × ÷ available, which are the only TWO numbers it is possible to make from the list below?

7    14    21    28    35    42    49    56    63    70

#7TimesTable

The Target Challenge

Can you arrive at 359 by inserting 2, 4, 6, 8 and 10 into the gaps below?

  •  (◯²×◯)–(◯×◯)÷◯ = 359

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment

DAY 358:

The Main Challenge

The American maths card game, 24game, can be both frustrating and addictive.

Your task is to arrive at the target answer of 24 by using the four digits shown in each of the three groups below, just once each per calculation.  You also have + – × ÷ available to use.

It is possible to reach 24 with two of them, but one group is impossible. Which one?

  •   2    3    3    4
  •   2    3    3    5
  •   2    3    3    6

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 1st column contains the following seven numbers:

13     21     22     27     55     56     60

Using all seven numbers exactly once each, with + – × ÷ available to use in your calculation, can you arrive at the target number of 100?

The Factors Challenge

Which of the numbers below are factors of 358?

4    6    8    10    12    14    16    18    None of them

The Mathematically Possible Challenge

Using 48 and 12 once each, with + – × ÷ available, which are the only THREE numbers it is possible to make from the list below?

6    12    18    24    30    36    42    48    54    60

#6TimesTable

The Target Challenge

Can you arrive at 358 by inserting 1, 2, 3, 4 and 6 into the gaps below?

  •  ◯⁵+◯⁴+◯³+◯²–◯ = 358

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment

DAY 357:

The Main Challenge

An 11-step number trail involving all four arithmetical operations.

Start with the number 8, then:

  • multiply by 5
  • 25% of this
  • 5
  • add twenty-two
  • 1/3 of this
  • ×4
  • subtract twenty-four
  • +9
  • divide by 7
  • add three
  • ÷3

What is your final answer?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 2nd & 5th columns contain the following fourteen numbers:

2   8   10   11   14   16   18   25   33   44   45   48   70   84

What is the lowest prime number you can make by adding three different numbers from the list?

The Factors Challenge

Which FOUR of the numbers below are factors of 357?

3    5    7    9    11    13    15    17    19    21    23

The Mathematically Possible Challenge

Using 48 and 12 once each, with + – × ÷ available, which FOUR numbers is it possible to make from the list below?

5    10    15    20    25    30    35    40    45    50

#5TimesTable

The Target Challenge

Can you arrive at 357 by inserting 4, 5, 7, 8 and 9 into the gaps below?

  •  (◯++◯)×◯×√◯ = 357

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment

DAY 356:

The Main Challenge

Using the numbers 1, 4 and 10 once each, with + – × ÷ available, can you find the EIGHT whole numbers from 1-30 it is mathematically possible to make?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 2nd & 5th columns contain the following fourteen numbers:

2   8   10   11   14   16   18   25   33   44   45   48   70   84

How many more even numbers than odd numbers are listed?

The Factors Challenge

Which of the numbers below are factors of 356?

4    6    8    10    12    14    16    None of them

The Mathematically Possible Challenge

Using 48 and 12 once each, with + – × ÷ available, which FIVE numbers is it possible to make from the list below?

4    8    12    16    20    24    28    32    36    40

#4TimesTable

The Target Challenge

Can you arrive at 356 by inserting 1, 2, 3, 4 and 5 into the gaps on each line below?

  •  (◯+◯)³+◯×◯+◯ = 356
  •  (◯+◯³)×(◯+√(◯+◯)) = 356

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment