DAY 302:

The Main Challenge

Using 2, 4 and 7 once each, with + – × ÷ available, list the ELEVEN different even-numbered target numbers that are mathematically possible to make from 2-60.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 6th & 7th rows contain the following fourteen numbers:

4   5   11   12   18   20   24   27   30   33   49   56   70   77

List a set of four different numbers, all multiples of 3, that have a sum of 99.

Can you then also find a 2nd set of four multiples of 3 that also make 99?

The Factors Challenge

Which of the following numbers are factors of 302?

4     6     8     10     12     14     16     18    None of them

The Mathematically Possible Challenge

Using 38 and 10 once each, with + – × ÷ available, which is the ONLY number it is possible to make from the list below?

9    18    27    36    45    54    63    72    81    90

#9TimesTable

The Target Challenge

Can you arrive at 302 by inserting 1, 2, 3, 4 and 5 into the gaps below?

  •  (◯–◯³)÷(◯×◯–◯) = 302

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment

DAY 301:

The Main Challenge

This number trail contains ten arithmetical steps. Start with the number 40, then:

  •  subtract twenty-six
  •  ÷7
  •  ×10
  •  30% of this
  •  multiply by 3
  •  two-thirds of this
  •  ×12
  •  double it
  •  add fifteen
  •  ÷3

What is your final answer?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 6th & 7th rows of the playing board contain the following fourteen numbers:

4   5   11   12   18   20   24   27   30   33   49   56   70   77

How many multiples of 3 are on the list?

The Factors Challenge

Which is the ONLY number on the following list that is a factor of 301?

3     5     7     9     11     13     15     17    19

The Mathematically Possible Challenge

Using 38 and 10 once each, with + – × ÷ available, which is the ONLY number it is possible to make from the list below?

8    16    24    32    40    48    56    64    72    80

#8TimesTable

The Target Challenge

Can you arrive at 301 by inserting 2, 3, 4, 5 and 6 into the gaps below?

  •  ◯+◯³+◯×(◯–◯) = 301

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment

DAY 300:

The Main Challenge

Here’s a Mathelona challenge for you to try based on the ones found in my pocket book, details of which can be found by clicking Mathelona.

You must make all four lines work out arithmetically by filling the 16 gaps with digits from 0 to 9.  Remember, each digit can only be inserted a maximum of TWICE:

◯  +  ◯   =    13    =   ◯  +  ◯
◯  +  ◯   =     8     =   ◯  –  ◯
◯  +  ◯   =    12    =   ◯  ×  ◯
◯  +  ◯   =     2     =   ◯  ÷  ◯

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 4th & 5th rows contain the following fourteen numbers:

3   6   7   10   16   21   32   35   44   50   54   60   81   84

What is the sum of the factors of 70 listed above?

The Factors Challenge

Which is the ONLY number in the following list that is not a factor of 300?

2    3    4    5    6    9    10    12    15    20

The Mathematically Possible Challenge

Using 38 and 10 once each, with + – × ÷ available, which are the only THREE numbers it is possible to make from the list below?

7    14    21    28    35    42    49    56    63    70

#7TimesTable

The Target Challenge

Can you arrive at 300 by inserting 10, 20, 30, 40 and 50 into the gaps below?

  •  ◯²–◯×◯÷(◯–◯) = 300

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment

DAY 299:

The Main Challenge

Which is the only 2-digit number to have exactly SEVEN factors?

. . . and an additional challenge for the number puzzle enthusiast; which is the only 3-digit number to have exactly SEVEN factors?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 4th & 5th rows contain the following fourteen numbers:

3   6   7   10   16   21   32   35   44   50   54   60   81   84

What is the sum of the two square numbers?

The Factors Challenge

Which is the ONLY number on the following list that is a factor of 299?

3     5     7     9     11     13     15     17    19

The Mathematically Possible Challenge

Using 38 and 10 once each, with + – × ÷ available, which are the only TWO numbers it is possible to make from the list below?

6    12    18    24    30    36    42    48    54    60

#6TimesTable

The Target Challenge

Can you arrive at 299 by inserting 8, 9, 10, 11 and 12 into the gaps below?

  •  (◯+◯)×◯+(◯×◯) = 299

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment

DAY 298:

The Main Challenge

Read the following facts and work out which number I am today:

  •  I am a 2-digit number,
  •  One of my digits is odd, the other is even,
  •  I have six factors,
  •  I am a multiple of 5 but not a multiple of 10.

Who am I?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 4th & 5th rows contain the following fourteen numbers:

3   6   7   10   16   21   32   35   44   50   54   60   81   84

List FOUR sets, each containing three numbers, that all have a sum of 100.

The Factors Challenge

Which of the following numbers are factors of 298?

4     6     8     10     12     14     16     18    None of them

The Mathematically Possible Challenge

Using 38 and 10 once each, with + – × ÷ available, which are the only THREE numbers it is possible to make from the list below?

5    10    15    20    25    30    35    40    45    50

#5TimesTable

The Target Challenge

Can you arrive at 298 by inserting 1, 2, 3, 4 and 5 into the gaps below?

  •  (◯³×◯)+(◯×◯×◯) = 298

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment

DAY 297:

The Main Challenge

This is a typical number puzzle from fellow designer, Kojiro Tominga, who is based in Yokohama, Japan.

Using 5, 5, 5 and 5, with – × ÷ available, can you make each of the target numbers 5, 10, 15, 20, 25, 30 and 35?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 4th & 5th rows contain the following fourteen numbers:

3   6   7   10   16   21   32   35   44   50   54   60   81   84

What is double the lowest multiple of 9 found on the list?

The Factors Challenge

Which THREE of the following numbers are factors of 297?

3     5     7     9     11     13     15     17

The Mathematically Possible Challenge

Using 810 and 12 once each, with + – × ÷ available, which are the only TWO numbers it is possible to make from the list below?

100   102   104   106   108   110   112   114   116   118   120

#EvenNumbers

The Target Challenge

Can you arrive at 297 by inserting 1, 2, 3, 4 and 5 into the gaps below?

  •  ◯²×(◯+◯)×(◯²–◯) = 297

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment

DAY 296:

The Main Challenge

Using any five numbers from 1-5 (more than once each if required) and with + – × ÷ available, can you find THREE different ways to make the target number 86?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 4th & 5th rows contain the following fourteen numbers:

3   6   7   10   16   21   32   35   44   50   54   60   81   84

What is the difference between the two largest odd numbers?

The Factors Challenge

Which TWO of the following numbers are factors of 296?

4     6     8     10     12     14     16

The Mathematically Possible Challenge

Using 810 and 12 once each, with + – × ÷ available, which is the ONLY number it is possible to make from the list below?

90    91    92    93    94    95    96    97    98    99

#NumbersIn90s

The Target Challenge

Can you arrive at 296 by inserting 1, 3, 5, 6 and 7 into the gaps below?

  •  (◯×◯+◯)×(◯²–◯) = 296

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment

DAY 295:

The Main Challenge

. . . is from Volume 1 of our Mathelona pocket book. You have a limited amount of numbers to work with, so can you make all three lines work out arithmetically by filling the 12 gaps with these numbers?

1      2      2      2      3      4      4      4      8      8      8      8

◯  +  ◯   =     5     =   ◯  –  ◯
◯  +  ◯   =    16    =   ◯  ×  ◯
◯  +  ◯   =     4     =   ◯  ÷  ◯

Full details of our popular number puzzle can be found by clicking Mathelona.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 2nd & 3rd rows contain the following fourteen numbers:

8   13   17   25   28   36   42   45   48   55   63   64   66   80

There are two numbers on the list that are consecutive. What is their sum?

The Factors Challenge

Which of the following numbers are factors of 295?

3     5     7     9     11     13     15

The Mathematically Possible Challenge

Using 810 and 12 once each, with + – × ÷ available, which is the ONLY number it is possible to make from the list below?

80    81    82    83    84    85    86    87    88    89

#NumbersIn80s

The Target Challenge

Can you arrive at 295 by inserting 3, 3, 4, 5 and 6 into the gaps below?

  •  (◯³÷◯–◯²+◯)×◯ = 295

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment

DAY 294:

The Main Challenge

This is a Banana & Clock Puzzle which caused quite a stir and promoted lots of discussion on twitter:

What do you think the answer on the final line is?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 2nd & 3rd rows contain the following fourteen numbers:

8   13   17   25   28   36   42   45   48   55   63   64   66   80

What is the difference between the highest and lowest multiples of 6?

The Factors Challenge

Which FOUR from the following list of numbers are factors of 294?

2     3     4     5     6     7     8     9

The Mathematically Possible Challenge

Using 810 and 12 once each, with + – × ÷ available, which is the ONLY number it is possible to make from the list below?

60    61    62    63    64    65    66    67    68    69

#NumbersIn60s

The Target Challenge

Can you arrive at 294 in two different ways when inserting 3, 4, 5, 6 and 7 into the gaps below?

  •  ◯×◯×(◯×◯–◯) = 294

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment

DAY 293:

The Main Challenge

Here is a FlagMath-style puzzle derived from our series of card games.

Each of the eleven letters, A-K, in the two sections below contains a percentage calculation. Which is the only letter to have the SAME answer in BOTH sections?

  • Section 1

F: 40% of 60    A: 25% of 20    G: 50% of 30    B: 60% of 35    D: 20% of 40    J: 30% of 5   K: 16% of 50    C: 70% of 30    H: 15% of 60    E: 10% of 100    I: 5% of 80

  • Section 2

H: 1% of 500    D: 80% of 10    K: 2% of 200    G: 30% of 80    J: 20% of 50    F: 10% of 40   C: 25% of 60    I: 70% of 20    A: 15% of 200    E: 5% of 140    B: 8% of 300

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 2nd & 3rd rows contain the following fourteen numbers:

8   13   17   25   28   36   42   45   48   55   63   64   66   80

When finding the highest multiple of 7 on the list, what is double this number?

The Factors Challenge

Which of the following numbers are factors of 293?

3     5     7     9     11     13     None of them

The Mathematically Possible Challenge

Using 810 and 12 once each, with + – × ÷ available, which is the ONLY number it is possible to make from the list below?

2    3    5    7    11    13    17    19    23    29

#PrimeNumbers

The Target Challenge

Can you arrive at 293 in two different ways when inserting 4, 9, 16, 25 and 36 into the gaps below?

  •  ◯²+◯+√◯+√(◯×◯) = 293

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Posted in 7puzzleblog.com | Leave a comment