DAY/DYDD 67:

The Main Challenge

Can you correctly place 0 1 1 2 2 3 4 5 5 8 9 and 9 into the 12 gaps below?

◯  +  ◯   =    3    =   ◯  –  ◯
◯  +  ◯   =    8    =   ◯  ×  ◯
◯  +  ◯   =    1    =   ◯  ÷  ◯

Click Mathelona for details on how to purchase our number puzzle pocket book.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 3rd & 5th rows contain the following fourteen numbers:

6   7   13   16   21   25   36   42   45   50   66   80   81   84

Which two numbers have a difference of 25?

The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every positive integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

There are FOUR ways of making 67 when using Lagrange’s Theorem. Can you find them all?

The Mathematically Possible Challenge

Using 46 and 12 once each, with + – × ÷ available, which FOUR numbers is it possible to make from the list below?

4    8    12    16    20    24    28    32    36    40

#4TimesTable

The Target Challenge

Can you arrive at 67 by inserting 4, 5, 7 and 8 into the gaps on each line?

  •  ◯×◯+× = 67
  •  ◯²+◯+◯×√ = 67
  •  ◯³+(◯+◯)÷◯ = 67

Answers can be found here.

Click Paul Godding for details of online maths tuition.

This entry was posted in 7puzzleblog.com. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.