DAY/DYDD 56:

The Main Challenge

Can you place the 12 numbers 0 1 2 2 3 3 4 6 6 7 9 and 9 into the 12 gaps below so that all three lines work out arithmetically?

◯  +  ◯   =     6     =   ◯  –  ◯
◯  +  ◯   =    18    =   ◯  ×  ◯
◯  +  ◯    =    3     =   ◯  ÷  ◯

If you enjoyed trying this puzzle, visit our Mathelona page for further details.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 4th & 6th rows contain the following fourteen numbers:

3   5   10   12   18   20   32   33   35   44   49   54   56   60

How many triangular numbers are listed above?

The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every positive integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

There is only ONE way of making 56 when using Lagrange’s Theorem. Can you find it?

The Mathematically Possible Challenge

Using 16 and once each, with + – × ÷ available, which is the ONLY number it is possible to make from the list below?

3    6    9    12    15    18    21    24    27    30

#3TimesTable

The Target Challenge

Can you arrive at 56 by inserting 2, 4, 6 and 8 into the gaps on each line?

  •  ◯×◯+◯×◯ = 56
  •  ◯²+×◯+ = 56
  •  (◯+)×◯–◯ = 56
  •  (◯+)×◯–◯⁴ = 56
  •  ◯×(◯+◯÷◯) = 56
  •  (◯+◯)×(◯–◯)² = 56

Answers can be found here.

Click Paul Godding for details of online maths tuition.

This entry was posted in 7puzzleblog.com. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.