# DAY/DYDD 56: The Main Challenge

Can you place the 12 numbers 0 1 2 2 3 3 4 6 6 7 9 and 9 into the 12 gaps below so that all three lines work out arithmetically?

◯  +  ◯   =     6     =   ◯  –  ◯
◯  +  ◯   =    18    =   ◯  ×  ◯
◯  +  ◯    =    3     =   ◯  ÷  ◯

If you enjoyed trying this puzzle, visit our Mathelona page for further details. The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 4th & 6th rows contain the following fourteen numbers:

3   5   10   12   18   20   32   33   35   44   49   54   56   60

How many triangular numbers are listed above? The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every positive integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

There is only ONE way of making 56 when using Lagrange’s Theorem. Can you find it? The Mathematically Possible Challenge

Using 16 and once each, with + – × ÷ available, which is the ONLY number it is possible to make from the list below?

3    6    9    12    15    18    21    24    27    30

#3TimesTable

The Target Challenge

Can you arrive at 56 by inserting 2, 4, 6 and 8 into the gaps on each line?

•  ◯×◯+◯×◯ = 56
•  ◯²+×◯+ = 56
•  (◯+)×◯–◯ = 56
•  (◯+)×◯–◯⁴ = 56
•  ◯×(◯+◯÷◯) = 56
•  (◯+◯)×(◯–◯)² = 56 Answers can be found here. Click Paul Godding for details of online maths tuition. This entry was posted in 7puzzleblog.com. Bookmark the permalink.

This site uses Akismet to reduce spam. Learn how your comment data is processed.