# DAY/DYDD 37: The Main Challenge

If you add 1+4, then to that answer add 9, then keep on adding consecutive square numbers to the previous total, what is the first answer you reach that is greater than 200?

(Hint: Square numbers are 1 (1×1), 4 (2×2), 9 (3×3) … and so on.) The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 1st & 4th rows contain the following fourteen numbers:

2   3   9   10   14   15   22   32   35   40   44   54   60   72

What is the sum of the factors of 30 listed above? The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every positive integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

There are THREE ways of making 37 when using Lagrange’s Theorem. Can you find them? The Mathematically Possible Challenge

Using 26 and 11 once each, with + – × ÷ available, which FOUR numbers is it possible to make from the list below?

2    3    5    7    11    13    17    19    23    29

#PrimeNumbers

The Target Challenge

Can you arrive at 37 by inserting 1, 3, 5 and 7 into the gaps on each line?

•  ◯×◯+◯– = 37
•  (◯+◯)×◯+ = 37
•  (◯+◯)×◯– = 37
•  ◯²–◯×(◯–◯) = 37
•  ◯²+◯×(◯–◯) = 37 Answers can be found here. Click Paul Godding for details of online maths tuition. This entry was posted in 7puzzleblog.com. Bookmark the permalink.

This site uses Akismet to reduce spam. Learn how your comment data is processed.