# DAY/DYDD 33: The Main Challenge

Using the three numbers 3, 6 and 9 just once each, with + – × ÷ available, THREE of the following target numbers are not possible to make:

3   6   9   12   15   18   21   24   27   30   33   36

What is the sum of these three impossible numbers? The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 5th & 7th rows contain the following fourteen numbers:

4   6   7   11   16   21   24   27   30   50   70   77   81   84

Which number on the list, when multiplied by 5, has its result also on the list? The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every positive integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

There are THREE ways of making 33 when using Lagrange’s Theorem. Can you find them? The Mathematically Possible Challenge

Using 26 and 11 once each, with + – × ÷ available, which is the ONLY number it is possible to make from the list below?

9    18    27    36    45    54    63    72    81    90

#9TimesTable

The Target Challenge

Can you arrive at 33 by inserting 2, 3, 4 and 5 into the gaps on each line?

•  (◯++◯)× = 33
•  (◯+)×◯– = 33
•  (³+◯–◯)÷◯ = 33 Answers can be found here. Click Paul Godding for details of online maths tuition. This entry was posted in 7puzzleblog.com. Bookmark the permalink.

This site uses Akismet to reduce spam. Learn how your comment data is processed.