# DAY/DYDD 32: The Main Challenge

Apart from 9+5+1, find the SEVEN other ways you can make 15 when combining and adding together three unique digits from 1-9. The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 5th & 7th rows contain the following fourteen numbers:

4   6   7   11   16   21   24   27   30   50   70   77   81   84

Which two pairs of numbers both have a difference of 11? The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every positive integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

There is just ONE way of making 32 when using Lagrange’s Theorem. Can you find it? The Mathematically Possible Challenge

Using 26 and 11 once each, with + – × ÷ available, which THREE numbers is it possible to make from the list below?

8    16    24    32    40    48    56    64    72    80

#8TimesTable

The Target Challenge

Can you arrive at 32 by inserting 2, 4, 7 and 8 into the gaps on each line?

•  ◯×+÷◯ = 32
•  ×÷◯+ = 32
•  (◯+◯)²÷◯+◯ = 32 Answers can be found here. Click Paul Godding for details of online maths tuition. This entry was posted in 7puzzleblog.com. Bookmark the permalink.

This site uses Akismet to reduce spam. Learn how your comment data is processed.