DAY 247:

The Main Challenge

Can you complete this Mathelona task by making the three lines work out arithmetically when inserting the 12 gaps below with the following 12 digits?

0      1      2      2      3      3      4      5      6      7      8      9

◯  +  ◯   =     3     =   ◯  –  ◯
◯  +  ◯   =    10    =   ◯  ×  ◯
◯  +  ◯   =     9     =   ◯  ÷  ◯

Further details of our pocket book of challenges can be found by clicking Mathelona.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 1st & 4th rows of the playing board contain the following fourteen numbers:

2   3   9   10   14   15   22   32   35   40   44   54   60   72

Which pair of numbers have a difference of 9?

The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every positive integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

There are TEN different ways to make 247 when using Lagrange’s Theorem. How many can you find?

The Mathematically Possible Challenge

Based on our best-selling arithmetic board game.

Using 25 and 10 once each, with + – × ÷ available, which FOUR numbers is it possible to make from the list below?

2    3    5    7    11    13    17    19    23    29

#PrimeNumbers

The Target Challenge

Can you arrive at 247 by inserting 3, 4, 5, 6 and 7 into the gaps below?

  •  (◯+◯)×◯×◯–◯ = 247

Answers can be found here.

Click Paul Godding for details of online maths tuition.

This entry was posted in 7puzzleblog.com. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *