DAY 246:

The Main Challenge

The seven musical letters, A-G, in the three sections below each contain an addition calculation. Only one letter has the same answer in all three sections, which one?

Visit FlagMath.com for details of our card game involving similar numerical challenges.

  • Section 1

E: 11+6    G: 7+7    C: 10+4    A: 13+6    B: 9+4    F: 8+8    D: 9+3

  • Section 2

A: 11+5    C: 13+5    F: 9+6    E: 15+3    D: 6+6     B: 8+5    G: 7+6

  • Section 3

C: 11+3    B: 11+2    D: 7+4    G: 14+1    F: 12+3    E: 14+3    A: 15+4

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 1st & 4th rows of the playing board contain the following fourteen numbers:

2   3   9   10   14   15   22   32   35   40   44   54   60   72

Which two separate numbers, when 9 is added to them, both become square numbers?

The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every positive integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

How many different ways can you find to make 246 when using Lagrange’s Theorem?

The Mathematically Possible Challenge

Based on our best-selling arithmetic board game.

Using 25 and 10 once each, with + – × ÷ available, which FOUR numbers is it possible to make from the list below?

1    4    9    16    25    36    49    64    81    100

#SquareNumbers

The Target Challenge

Can you arrive at 246 by inserting 3, 4, 5, 6 and 7 into the gaps below?

  •  (◯×◯+◯×◯)×◯ = 246

Answers can be found here.

Click Paul Godding for details of online maths tuition.

This entry was posted in 7puzzleblog.com. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *