DAY 216:

The Main Challenge

From the list of ten numbers below, find THREE combinations that total 50, where each combination must contain three different numbers.

The numbers are allowed to appear in more than one combination:

7     9     10     11     16     17     18     24     25     28

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 3rd & 4th rows of the playing board contain the following fourteen numbers:

3   10   13   25   32   35   36   42   44   45   54   60   66   80

What is the product of the two prime numbers listed?

The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every positive integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

There are FIVE different ways to make 216 when using Lagrange’s Theorem. How many can you find?

The Mathematically Possible Challenge

Based on our best-selling arithmetic board game.

Using 46 and once each, with + – × ÷ available, which are the only TWO numbers it is possible to make from the list below?

9    18    27    36    45    54    63    72    81    90

#9TimesTable

The Target Challenge

Can you arrive at 216 by inserting 368 and 9 into the gaps on each line?

  •  ◯×◯×(◯–◯) = 216
  •  (◯×◯+◯)×◯ = 216

Answers can be found here.

Click Paul Godding for details of online maths tuition.

This entry was posted in 7puzzleblog.com. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *