day/dydd 200 at 7puzzleblog.com

The Main  Challenge

Playing the superb American maths card game, 24game®, can be frustrating but very addictive when testing your arithmetical skills.

When using four numbers just once each, with + – × ÷ available, it is only possible to make 24 with only ONE of the seven groups of numbers below:

•      1    1    7    6
•      1    1    7    7
•      1    1    7    8
•      1    1    7    9
•      1    1    7   10
•      1    1    7   11
•      1    1    7   12

. . . but which one?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 6th & 7th rows of the playing board contain the following fourteen numbers:

4   5   11   12   18   20   24   27   30   33   49   56   70   77

Which is the only cube number listed?

The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every positive integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

There are FIVE different ways to make 200 when using Lagrange’s Theorem. How many can you find?

The Mathematically Possible Challenge

Using 57 and 11 once each, with + – × ÷ available, which is the ONLY number it is possible to make from the list below?

5    10    15    20    25    30    35    40    45    50

#5TimesTable

The Target Challenge

Can you arrive at 200 by inserting 101525 and 30 into the gaps on each line?

•  ◯×◯–◯×◯ = 200
•  (◯–◯÷◯)×◯ = 200

Answers can be found here.

Click Paul Godding for details of online maths tuition.

This entry was posted in 7puzzleblog.com. Bookmark the permalink.

This site uses Akismet to reduce spam. Learn how your comment data is processed.