DAY 197:

The Main Challenge

There is just one set of three consecutive numbers in ascending order whose sum is less than 50 and follow this sequence:

  •  prime number – cube number – square number

What is the sum of these three numbers?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 6th & 7th rows of the playing board contain the following fourteen numbers:

4   5   11   12   18   20   24   27   30   33   49   56   70   77

What is the sum of the multiples of 11?

The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every positive integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

Show how you can make 197, in SEVEN different ways, when using Lagrange’s Theorem.

The Mathematically Possible Challenge

Based on our best-selling arithmetic board game.

Using 34 and 12 once each, with + – × ÷ available, which FOUR numbers is it possible to make from the list below?

2    3    5    7    11    13    17    19    23    29

#PrimeNumbers

The Target Challenge

Can you arrive at 197 by inserting 1411 and 14 into the gaps on each line?

  •  ◯×(◯+◯)–◯ = 197
  •  (◯+◯)²–(◯×double◯) = 197

Answers can be found here.

Click Paul Godding for details of online maths tuition.

This entry was posted in 7puzzleblog.com. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *