DAY 182:

The Main Challenge

Can you place the 12 digits 0, 1, 1, 2, 3, 4, 5, 5, 6, 7, 9 and 9 into the gaps below so that all three lines work out arithmetically?

◯  +  ◯    =     4     =   ◯  –  ◯
◯  +  ◯    =    18    =   ◯  ×  ◯
◯  +  ◯    =     7     =   ◯  ÷  ◯

To order a pocket book full of these popular number puzzles, click Mathelona.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 4th & 7th rows contain the following fourteen numbers:

3   4   10   11   24   27   30   32   35   44   54   60   70   77

Which two numbers, when each is doubled, become cube numbers?

The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

Show how you can make 182, in EIGHT different ways, when using Lagrange’s Theorem.

The Mathematically Possible Challenge

Based on our best-selling arithmetic board game.

Using 36 and 12 once each, with + – × ÷ available, which THREE target numbers is it possible to make from the list below?

10    20    30    40    50    60    70    80    90    100

#10TimesTable

The Target Challenge

Can you arrive at 182 by inserting 2, 6, 7 and 14 into the gaps on each line?

  •  (◯×◯+◯)×◯ = 182   (2 different ways!)
  •  (◯+◯)×◯×half◯ = 182

Answers can be found here.

Click Paul Godding for details of online maths tuition.

This entry was posted in 7puzzleblog.com. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *