day/dydd 179 at 7puzzleblog.com

T he Main Challenge

You must make all three lines work out arithmetically by inserting the twelve digits 0 1 1 2 2 3 4 4 5 6 8 and 8 into the gaps below:

◯  +  ◯   =    6    =   ◯  –  ◯
◯  +  ◯   =    8    =   ◯  ×  ◯
◯  +  ◯   =    2    =   ◯  ÷  ◯

If you enjoy this, click Mathelona for further details of our number puzzle pocket book.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 1st & 6th rows contain the following fourteen numbers:

2   5   9   12   14   15   18   20   22   33   40   49   56   72

List two sets of three different numbers that both have a total of 77.

The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

Show how you can make 179, in SIX different ways, when using Lagrange’s Theorem.

The Mathematically Possible Challenge

Using 36 and 12 once each, with + – × ÷ available, which THREE target numbers is it possible to make from the list below?

7    14    21    28    35    42    49    56    63    70

#7TimesTable

The Target Challenge

Can you arrive at 179 by inserting 5, 6, 7 and 22 into the gaps on each line?

•  (◯+◯)×◯+◯ = 179
•  (half◯)²+10×◯+◯–◯ = 179

Answers can be found here.

Click Paul Godding for details of online maths tuition.

This entry was posted in 7puzzleblog.com. Bookmark the permalink.

This site uses Akismet to reduce spam. Learn how your comment data is processed.