DAY 179:

The Main Challenge

You must make all three lines work out arithmetically by inserting the twelve digits 0, 1, 1, 2, 2, 3, 4, 4, 5, 6, 8 and 8 into the gaps below:

◯  +  ◯   =    6    =   ◯  –  ◯
◯  +  ◯   =    8    =   ◯  ×  ◯
◯  +  ◯   =    2    =   ◯  ÷  ◯

If you enjoy this, click Mathelona for further details of our number puzzle pocket book.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 1st & 6th rows contain the following fourteen numbers:

2   5   9   12   14   15   18   20   22   33   40   49   56   72

List two sets of three different numbers that both have a total of 77.

The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

Show how you can make 179, in SIX different ways, when using Lagrange’s Theorem.

The Mathematically Possible Challenge

Based on our best-selling arithmetic board game.

Using 36 and 12 once each, with + – × ÷ available, which THREE target numbers is it possible to make from the list below?

7    14    21    28    35    42    49    56    63    70

#7TimesTable

The Target Challenge

Can you arrive at 179 by inserting 5, 6, 7 and 22 into the gaps on each line?

  •  (◯+◯)×◯+◯ = 179
  •  (half◯)²+10×◯+◯–◯ = 179

Answers can be found here.

Click Paul Godding for details of online maths tuition.

This entry was posted in 7puzzleblog.com. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *