# DAY/DYDD 162: The Main Challenge

Here’s a mini-Mathelona challenge where you must place the eight digits 0, 1, 1, 2, 2, 2, 3 and 4 into the eight gaps so both lines work out arithmetically:

◯  +  ◯   =    4    =   ◯  ×  ◯
◯  –  ◯   =    2    =   ◯  ÷  ◯

Click Mathelona for details of our pocket book challenges. The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 4th & 6th rows contain the following fourteen numbers:

3   5   10   12   18   20   32   33   35   44   49   54   56   60

Which two numbers, when each is divided by 6, also appear on the list? The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (4+1+1+1).

Show how you can make 162, in THIRTEEN different ways, when using Lagrange’s Theorem. The Mathematically Possible Challenge

Using the three digits 35 and 8 once each, with + – × ÷ available, which TWO numbers is it possible to make from the list below?

1     8     27     64     125

#CubeNumbers The Target Challenge

Can you arrive at 162 by inserting 239 and 12 into the gaps on each line?

•  ◯××(◯–◯) = 162
•  ◯³×(×◯–◯) = 162 Answers can be found here. Click Paul Godding for details of online maths tuition. This entry was posted in 7puzzleblog.com. Bookmark the permalink.

This site uses Akismet to reduce spam. Learn how your comment data is processed.