DAY 162:

The Main Challenge

Here’s a mini-Mathelona challenge where you must place the eight digits 0, 1, 1, 2, 2, 2, 3 and 4 into the eight gaps so both lines work out arithmetically:

◯  +  ◯   =    4    =   ◯  ×  ◯
◯  –  ◯   =    2    =   ◯  ÷  ◯

Click Mathelona for details of our pocket book challenges.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 4th & 6th rows contain the following fourteen numbers:

3   5   10   12   18   20   32   33   35   44   49   54   56   60

Which two numbers, when each is divided by 6, also appear on the list?

The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (4+1+1+1).

Show how you can make 162, in NINE different ways, when using Lagrange’s Theorem.

The Mathematically Possible Challenge

Based on our best-selling arithmetic board game.

Using the three digits 35 and 8 once each, with + – × ÷ available, which TWO numbers is it possible to make from the list below?

1     8     27     64     125

#CubeNumbers

The Target Challenge

Can you arrive at 162 by inserting 239 and 12 into the gaps on each line?

  •  ◯××(◯–◯) = 162
  •  ◯³×(×◯–◯) = 162

Answers can be found here.

Click Paul Godding for details of online maths tuition.

This entry was posted in 7puzzleblog.com. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *