# DAY/DYDD 158: The Main Challenge

Here’s a 10-step number trail involving all four arithmetical operations together with the numbers 1, 2 and 3.

Starting with 10, carry out the following steps:

• add 2
• ×1
• ÷3
• 2
• multiply by 3
• +1
• subtract 3
• divide by 1
• ×2
• take away two

What is your final answer? The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 1st & 5th rows contain the following fourteen numbers:

2   6   7   9   14   15   16   21   22   40   50   72   81   84

Find two separate pairs of numbers that each have a difference of 44. The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (4+1+1+1).

Show how you can make 158, in SIX different ways, when using Lagrange’s Theorem. The Mathematically Possible Challenge

Using the three digits 35 and 8 once each, with + – × ÷ available, which is the ONLY number it’s possible to make from the list below?

9    18    27    36    45    54    63    72    81    90

#9TimesTable The Target Challenge

Can you arrive at 158 by inserting 7810 and 11 into the gaps below?

•  ◯×◯+◯×◯ = 158 Answers can be found here. Click Paul Godding for details of online maths tuition. This entry was posted in 7puzzleblog.com. Bookmark the permalink.

This site uses Akismet to reduce spam. Learn how your comment data is processed.