DAY 154:

The Main Challenge

From the following list of eighteen numbers, eliminate all square numbers, multiples of 8, factors of 60 and prime numbers.

3  4  7  10  11  15  16  17  24  27  30  32  36  48  49  54  56  64

What is the sum of the TWO numbers that remain?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 3rd & 7th rows contain the following fourteen numbers:

4   11   13   24   25   27   30   36   42   45   66   70   77   80

How many even numbers, when halved, become odd numbers?

The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (4+1+1+1).

Show how you can make 154, in TEN different ways, when using Lagrange’s Theorem.

The Mathematically Possible Challenge

Based on our best-selling arithmetic board game.

Using the three digits 35 and 8 once each, with + – × ÷ available, which are the only TWO numbers it’s possible to make from the list below?

5    10    15    20    25    30    35    40    45    50

#5TimesTable

The Target Challenge

Can you arrive at 154 by inserting 567 and 8 into the gaps in each line below?

  •  (◯×◯–◯)×◯ = 154
  •  ◯²+◯²+◯²+◯ = 154

Answers can be found here.

Click Paul Godding for details of online maths tuition.

This entry was posted in 7puzzleblog.com. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *