# DAY/DYDD 153: The Main Challenge

Using the three numbers 4, 4 and 4 once each, with + – × ÷ available, there are just SIX target numbers from 1-30 that are mathematically possible to achieve.  Can you find them? The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid of 49 different numbers, ranging from up to 84.

The 3rd & 7th rows contain the following fourteen numbers:

4   11   13   24   25   27   30   36   42   45   66   70   77   80

Which number above 20, when 15 is subtracted from it, becomes a multiple of 7? The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (4+1+1+1).

Show how you can make 153, in TEN different ways, when using Lagrange’s Theorem. The Mathematically Possible Challenge

Using the three digits 35 and 8 once each, with + – × ÷ available, which are the only TWO numbers it’s possible to make from the list below?

4    8    12    16    20    24    28    32    36    40

#4TimesTable The Target Challenge

Can you arrive at 153 by inserting 346 and 7 into the gaps in each line below?

•  (◯×◯–◯)×◯² = 153
•  ◯+◯×treble(◯+◯) = 153 Answers can be found here. Click Paul Godding for details of online maths tuition. This entry was posted in 7puzzleblog.com. Bookmark the permalink.

This site uses Akismet to reduce spam. Learn how your comment data is processed.