# DAY/DYDD 150: The Main Challenge

Find the sum of the numbers that remain after eliminating multiples of 3, 5 and 7 from all the odd numbers between 10 and 40. The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 2nd & 6th rows contain the following fourteen numbers:

5   8   12   17   18   20   28   33   48   49   55   56   63   64

From the list, which three different numbers have a sum of 100? The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (4+1+1+1).

Show how you can make 150, in ELEVEN different ways, when using Lagrange’s Theorem. The Mathematically Possible Challenge

Using the three digits 26 and 9 once each, with + – × ÷ available, which TWO numbers is it possible to make from the list below?

1     8     27     64     125

#CubeNumbers The Target Challenge

Can you arrive at 150 by inserting 102025 and 30 into the gaps on each line?

•  (◯+◯)×(◯–◯) = 150
•  ◯×◯–double(◯+◯) = 150 Answers can be found here. Click Paul Godding for details of online maths tuition. This entry was posted in 7puzzleblog.com. Bookmark the permalink.

This site uses Akismet to reduce spam. Learn how your comment data is processed.