# day/dydd 147 at 7puzzleblog.com T he Main Challenge

Firstly, allocate numerical values to the following fifteen letters in the English alphabet:

E=3  F=9  G=6  H=1  I=4  L=0  N=5  O=7  R=6  S=1  T=2  U=8  V=3  W=7  X=11

You’ll see that O+N+E adds up to 1 and T+W+O=2 and so on, but what is the biggest number it will make before this amazing trick stops working?  A must for you and your kids to try! The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 2nd & 6th rows contain the following fourteen numbers:

5   8   12   17   18   20   28   33   48   49   55   56   63   64

Which number, when halved, is also on the list? The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (4+1+1+1).

Show how you can make 147, in EIGHT different ways, when using Lagrange’s Theorem. The Mathematically Possible Challenge

Using the three digits 2, 6 and 9 once each, with + – × ÷ available, which is the ONLY number it’s possible to make from the list below?

10    20    30    40    50    60    70    80    90    100

#10TimesTable The Target Challenge

Can you arrive at 147 by inserting 2, 4, 7 and 10 into the gaps on each line?

•  ◯²×(◯+◯)÷◯ = 147
•  (◯+◯)²+◯–◯ = 147
•  ◯²+◯²+◯–◯ = 147   