# DAY/DYDD 141: The Main Challenge

One of our easier Mathelona-style challenges, still utilising the four arithmetic operations.  Place the eight digits 1 2 2 3 4 4 5 and 6 into the gaps so both lines work out:

◯  +  ◯   =    6    =   ◯  ×  ◯
◯  –  ◯   =    2    =   ◯  ÷  ◯

If you enjoy this type of number puzzle, click Mathelona for details of our pocket book of challenges. The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 1st & 4th rows contain the following fourteen numbers:

2   3   9   10   14   15   22   32   35   40   44   54   60   72

What is the difference between the two multiples of 7? The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every positive integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

There are SIX ways of making 141 when using Lagrange’s Theorem. Can you find them? The Mathematically Possible Challenge

Using the three digits 2, 6 and 9 once each, with + – × ÷ available, which are the only THREE numbers it is possible to make from the list below?

4    8    12    16    20    24    28    32    36    40

#4TimesTable The Target Challenge

Can you arrive at 141 by inserting 3, 5, 7 and 12 into the gaps on each line?

•  ◯×(◯+◯)–◯ = 141
•  (◯×◯+◯)×◯ = 141
•  ◯³+◯+◯–◯ = 141 Answers can be found here. Click Paul Godding for details of online maths tuition. This entry was posted in 7puzzleblog.com. Bookmark the permalink.

This site uses Akismet to reduce spam. Learn how your comment data is processed.