# DAY/DYDD 130: T he Main Challenge

Can you place the 12 numbers 1 1 2 2 3 3 4 4 5 6 7 and 8 into the 12 gaps below so that all four equations work out arithmetically?

◯   +   ◯   =   ◯
◯   +   ◯   =   ◯
◯   +   ◯   =   ◯
◯   +   ◯   =   ◯

Click Mathelona for details of similar pocket-book challenges. The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 2nd & 4th rows contain the following fourteen numbers:

3   8   10   17   28   32   35   44   48   54   55   60   63   64

What is the difference between the sum of the multiples of 8 and the sum of the multiples of 7? The Lagrange Challenge

Lagrange’s Four-Square Theorem states that every positive integer can be made by adding up to four square numbers.

For example, 7 can be made by 2²+1²+1²+1² (or 4+1+1+1).

There are TEN ways of making 130 when using Lagrange’s Theorem. Can you find them all? The Mathematically Possible Challenge

Using 36 and 10 once each, with + – × ÷ available, which THREE numbers is it possible to make from the list below?

5    10    15    20    25    30    35    40    45    50

#5TimesTable

The Target Challenge

Can you arrive at 130 by inserting 2, 3, 5 and 10 into the gaps on each line?

•  (◯+◯)×◯×◯ = 130
•  (◯×◯–◯)×◯ = 130
•  ◯²+◯²+◯²–◯² = 130 Answers can be found here. Click Paul Godding for details of online maths tuition. This entry was posted in 7puzzleblog.com. Bookmark the permalink.

This site uses Akismet to reduce spam. Learn how your comment data is processed.